Rút gọn biểu thức
\(A=\frac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha.cos\alpha}\)
Rút gọn biểu thức:
\(A=\dfrac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin\alpha}\)
Đề bài ko chính xác, biểu thức này không rút gọn được (có thể coi việc biến đổi khả dĩ duy nhất \(1+2sina.cosa=\left(sina+cosa\right)^2\) không phải là hành động rút gọn)
chỉnh lại đề 1 chút: \(A=\dfrac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha+2sin\alpha.cos\alpha}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}\)
\(=\dfrac{\left(cos\alpha+sin\alpha\right)^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{cos\alpha+sin\alpha}{cos\alpha-sin\alpha}\)
\(\frac{1-2sin\alpha.cos\alpha}{sin^2\alpha-cos^2\alpha}\)
rút gọn biểu thức trên
Áp dụng: \(sin^2a+cos^2a=1\)
\(bt=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)
Cho cot α = 3. Tính giá trị của các biểu thức sau
a) \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}\)
b)\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)
Giúp em với ạ, em đang cần gấp!
\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)
\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)
a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)
b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)
Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)
\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)
Rút gọn biểu thức:
a) A= \(\frac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin^2\alpha}\)
b) B= ( 1 + tan2α)( 1 + sin2α) - ( 1 + cot2α)( 1 - cos2α)
c) C= sin6α + cos6α + 3 sin2α. cos2α
a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)
b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)
\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)
\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)
c)
\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)
Biết tanB=2 tính
\(A=\frac{2sin\alpha+cos\alpha}{3sin\alpha-4cos\alpha}\)
\(B=sin^2\alpha+2sin\alpha.cos\alpha-3cos^2\alpha\)
\(C=\frac{sin^2\alpha-sin\alpha.cos\alpha-cos^2\alpha}{2sin\alpha.cos\alpha}\)
Giúp mik với, ai làm xong mik sẽ tick cho cảm ơn nhiều
hỏi tí chớ \(TanB=2\) hay \(Tan\alpha=2\) vậy .
Tính
A= \(\frac{2sin\alpha+cos\alpha}{3sin\alpha-4cos\alpha}\)
B= \(sin^2\alpha+2sin\alpha.cos\alpha-3cos^3\alpha\)
C= \(\frac{sin^2\alpha-sin\alpha.cos\alpha-cos^2\alpha}{2sin\alpha.cos\alpha}\)
Giúp mik với, ai làm được mik sẽ tick cho. Cảm ơn trước nhé
Những biểu thức này đều không tính toán ra được giá trị cụ thể nên không phù hợp với yêu cầu "tính". Mình nghĩ bạn nên xem xét lại yêu cầu đề.
Lời giải:
Biểu thức $A$ dạng như vậy là gọn rồi bạn ạ. Biến đổi thêm cũng không có ý nghĩa.
----------
\(B=\sin ^2a+\sin 2a-3\cos ^3a\)
----------
\(C=\frac{\sin ^2a-\sin a\cos a-\cos ^2a}{2\sin a\cos a}=\frac{\sin a}{2\cos a}-\frac{1}{2}-\frac{\cos a}{2\sin a}\)
\(=\frac{\tan a-1-\cot a}{2}\)
6. CM đẳng thức
a) \(\dfrac{sin^3\alpha+cos^3\alpha}{sin\alpha+cos\alpha}=1-sin\alpha.cos\alpha\)
c) sin4α + cos4α - sin6α - cos6α = sin2α . cos2α
b) \(\dfrac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha.cos\alpha}=\dfrac{tan\alpha-1}{tan\alpha+1}\)
a: \(VT=\dfrac{\left(sina+cosa\right)^3-3\cdot sina\cdot cosa\left(sina+cosa\right)}{sina+cosa}\)
=(sina+cosa)^2-3*sina*cosa
=sin^2a+cos^2a-sina*cosa
=1-sina*cosa=VP
c: VT=(sin^2a+cos^2a)^2-2*sin^2a*cos^2a-(sin^2a+cos^2a)^3+3*sin^2a*cos^2a*(sin^2a+cos^2a)
=1-2sin^2a*cos^2a-1+3*sin^2a*cos^2a
=sin^2a*cos^2a=VP
RÚT GỌN : \(\frac{1+2sin\alpha+cos\alpha}{cos^2\alpha-sin^2\alpha}\)
đơn giản biểu thức:
\(\frac{1-cos\alpha}{sin^2\alpha}-\frac{1}{1+cos\alpha}\)
\(\frac{1-sin^2\alpha.cos^2\alpha}{cos^2\alpha}-cos^2\alpha\)
\(\frac{1-cosa}{1-cos^2a}-\frac{1}{1+cosa}=\frac{1-cosa}{\left(1-cosa\right)\left(1+cosa\right)}-\frac{1}{1+cosa}=\frac{1}{1+cosa}-\frac{1}{1+cosa}=0\)
\(\frac{1-sin^2a.cos^2a}{cos^2a}-cos^2a=\frac{1}{cos^2a}-\frac{sin^2a.cos^2a}{cos^2a}-cos^2a\)
\(=\frac{1}{cos^2a}-\left(sin^2a+cos^2a\right)=\frac{1}{cos^2a}-1\)
\(=\frac{1-cos^2a}{cos^2a}=\frac{sin^2a}{cos^2a}=tan^2a\)