Những câu hỏi liên quan
ND
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
NT
5 tháng 2 2022 lúc 23:27

b: Gọi d=UCLN(2n+1;3n+1)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UC(2n+1;3n+1)={1;-1}

c: Gọi d=UCLN(75n+6;8n+7)

\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)

\(\Leftrightarrow d=13\)

=>UC(5n+6;8n+7)={1;-1;13;-13}

Bình luận (0)
LC
Xem chi tiết
H24
25 tháng 10 2020 lúc 14:35

thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)

có bổ đề SCP LẺ chia 8 dư 1 do đó:

trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 10 2020 lúc 14:45

\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)

\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)

thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)

đến đây thì đơn giản

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 10 2020 lúc 14:49

\(16ab+1⋮a+b\Leftrightarrow16ab+4a+4b+1=\left(4a+1\right)\left(4b+1\right)⋮a+b\)

\(d=\left(4a+1,a+b\right)\Rightarrow4a+1-4a-4b=1-4b⋮d\text{ hay }4b-1⋮d\Rightarrow\left(4a+1,a+b\right)=1\)

do đó: \(4b+1⋮a+b\Rightarrow4b+1=ka+kb\text{ với k}\le3\)

\(+,k=3\Rightarrow4b+1=3a+3b\text{ hay }b+1=3a\)

k=2 thì 4b+1=2a+2b hay 2b=2a-1 

k=1 thì 3b+1=a

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LT
5 tháng 2 2016 lúc 9:31

+ Nếu p=2 => p+4=2+4=6 \(\div\) 2 ( Hợp số ) ( Loại )

+ Nếu p=3 => p+4 =3+4=7 ( SNT )

                     p+20=3+20=23 (SNT ) ( nhận )

+ Nếu p=3k+1 => p+20=3k+1+20=3k+21 \(\div\) 3 ( Hợp số )(Loại)

+ Nếu p = 3k + 2 => p+4=3k+2+4=3k+6 \(\div\) 3 ( Hợp số ) (loại)

Vậy : p=3

* Chú ý : \(\div\) : Chia hết

Bình luận (0)
HT
5 tháng 2 2016 lúc 9:29

số 3 đó bạn !!!

Bình luận (0)
VT
5 tháng 2 2016 lúc 9:30

3 , ủng hộ mk nha

Bình luận (0)
HH
Xem chi tiết
DT
2 tháng 10 2023 lúc 21:09

Để A là snt thì : x - 2 = 1 hoặc x^2 + 2x + 2 =1

=> x = 3 hoặc (x+1)^2 = 0

=> x = 3 hoặc x = -1

Thử lại : Với x = 3 thì A = 17 là snt

Với x = -1 thì A = -3 ( k là snt )

Vậy x = 3

Bình luận (0)
PL
Xem chi tiết
DC
21 tháng 8 2018 lúc 21:52

Nếu n=0 thì n + 9 = 0 + 9 = 9; n + 15 = 0 + 15 = 15 đều là hợp số (loại)

Nếu n = 1 thì n + 3 = 1 + 3 = 4; n + 7 = 1 + 7 = 8; n + 9 = 1 + 9 = 10; n + 13 = 1 + 13 = 14; n + 15 = 1 + 15 = 16 đều hợp số (loại)

Nếu n = 2 thì n + 7 = 2 + 7 = 9; n + 13 = 2 + 13 = 15 là hợp số (loại)

Nếu n = 3 thì n + 1 = 3 + 1 = 4; n + 3 = 3 + 3 = 6; n + 7 = 3 + 7 = 10; n + 9 = 3 + 9 = 12; n + 13 = 3 + 3 = 16; n + 15 = 3 +15=18 đều là hợp số (loại)

Nếu n = 4 thì n + 1 = 4 + 1 = 5; n + 3 = 4 + 3 = 7; n + 7 = 4 + 7 = 11; n + 13 = 13 + 4 = 17; n + 15 = 15 + 4 = 19; n +9= 4 + 9= 13 đều là số nguyên tố (chọn)

Nếu n = 5 thì n + 1 = 1 + 5= 6;n+ 3 = 5 + 3 = 8;n + 9 = 5 + 9 = 14;n + 13 = 5 + 13 = 18;n + 15 = 15 + 15 = 20 đều là hợp số (loại)

Xét n> 5 thì n = 5k + 1 hoặc 5k + 2 hoặc 5k + 3 hoặc 5 k + 4

Nếu n = 5k+ 1 thì n + 9 = 5k + 1 + 9 = 5k + 10 = 5x (k + 2) chia hết cho 5 (loại)

Nếu n = 5k + 2 thì n + 3 = 5k + 2 + 3 = 5k + 5 = 5 x (k+ 1) chia hết cho 5;n + 13 = 5k+ 2 + 13 = 5k+ 15 = 5 x(k+3)chia hết cho 5 (loại)

Nếu n=5k + 3 thì n + 7 = 5k + 3 + 7 = 5k + 10 = 5 x (k+2) chia hết cho 5 (loại)

Nếu n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 = 5 x (k+ 1) chia hết cho 5 (loại)

Suy ra n < 5. Vậy n = 4 thì n + 1; n + 3;n + 9; n + 3;n + 13; n + 15 là số nguyên tố.

Bình luận (0)
DC
21 tháng 8 2018 lúc 21:54

k đê!!

Bình luận (0)
NL
Xem chi tiết
DL
27 tháng 6 2016 lúc 15:42

+ Nếu p = 3 thì \(p^2+14=23\)là số nguyên tố.

+ Nếu p > 3. Vì p là số nguyên tố nên p không chia hết cho 3.

Nếu p chia 3 dư 1 thì  p = 3k + 1 và \(p^2+14=9k^2+6k+15=3\left(3k^2+2k+5\right)\)chia hết cho 3 nên không phải số nguyên tố.Nếu p chia 3 dư 2 thì  p = 3k + 2 và \(p^2+14=9k^2+6k+24=3\left(3k^2+2k+8\right)\)chia hết cho 3 nên không phải số nguyên tố.

Vậy chỉ có p = 3 thỏa mãn yêu cầu của đề bài.

Bình luận (0)
WC
27 tháng 6 2016 lúc 15:44

Nếu p=2 => \(p^2+14\)= 22+14=18( loại )

Nếu p=3=> \(p^2+14\)=32+14=23 ( thỏa mãn )

=> Nếu p>3 => p không chia hết cho 3=>\(\hept{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)(k thuộc N*)

Nếu p= 3k+1 => \(p^2+14\)= (3k+1)2+14=9k2+6k+1+14=9k2+6k+14 chia hết cho 3 ( loại )

Nếu p=3k+2=> \(p^2+14\)= (3k+2)2+14= 9k2+12k+4+14=9k2+12k+18 chia hết cho 3 ( loại )

Vậy p=3

Bình luận (0)
MN
Xem chi tiết