Cho hình chữ nhật ABCD, M là trung điểm của cạnh BC.
Chứng minh rằng \(\Delta ABM = \Delta DCM\).
Cho \(\Delta\)ABC cân tại A,đường cao AH.Gọi M là trung điểm của AB,E là điểm đối xứng với H qua M.
a)Chứng minh tứ giác AHBE là hình chữ nhật
b)Gọi F đối xứng A qua BC.Chứng minh tứ giác ABFC là hình thoi
c)Gọi K là giao điểm của FM và BC.Chứng minh 4HK=CK
a) Để chứng minh tứ giác AHBE là hình chữ nhật, ta cần chứng minh AH || BE và AH = BE.
Vì ΔABC cân tại A, nên đường cao AH là đường trung trực của BC. Do đó, AH vuông góc với BC.
Vì E là điểm đối xứng của H qua M, nên EM = MH và góc EMH = góc HME = 90 độ.
Do đó, ta có:
- AH || BE (vì AH và BE đều vuông góc với BC).
- AH = EM = BE (vì EM = MH và E là điểm đối xứng của H qua M).
Vậy tứ giác AHBE là hình chữ nhật.
b) Gọi F là điểm đối xứng của A qua BC. Ta cần chứng minh tứ giác ABFC là hình thoi.
Vì F là điểm đối xứng của A qua BC, nên AF = AC và góc AFC = góc ACB.
Vì ΔABC cân tại A, nên góc ACB = góc ABC.
Do đó, ta có:
- AF = AC (vì F là điểm đối xứng của A qua BC).
- góc AFC = góc ACB = góc ABC.
Vậy tứ giác ABFC là hình thoi.
c) Gọi K là giao điểm của FM và BC. Ta cần chứng minh 4HK = CK.
Vì M là trung điểm của AB, nên MK || AC và MK = 1/2 AC.
Vì E là điểm đối xứng của H qua M, nên EM = MH.
Do đó, ta có:
- HK = EM (vì HK || EM và HK = EM).
- CK = AC (vì CK là đường chéo của hình chữ nhật AHBE).
Vậy ta có:
4HK = 4EM = 2EM + 2EM = 2EM + 2MH = EH + CH = CK.
Vậy 4HK = CK.
Bài 4:
Cho tam giác ABC; gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao MD = MA.
a) Chứng minh: \(\Delta ABM=\Delta DCM\)
b) Chứng minh: AB // CD
c) Kẻ \(BH\perp AM\left(H\varepsilon AM\right),\) \(CK\perp DM\left(K\varepsilon DM\right)\), cho biết MK = 1,5cm. Tính độ dài của đoạn thẳng HK.
Bài 5:
Cho 3 số thực a, b, c thỏa mãn \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)
Chứng minh rằng: 4(a – b)(b – c) = (c – a)2.
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD
Cho \(\Delta\)ABC , gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm D sao cho MA = MD . Chứng minh :
a) \(\Delta\)ABM = \(\Delta\)DCM
b) AC = BD và AC // BD
a) Vì M là trung điểm của BC
=> BM = CM
Xét tam giác ABM và tam giác DCM có:
AM = DM(gt)
góc AMB = DMC (đối đỉnh)
VM = CM (cmt)
=> đpcm
b) Xét tam giác BDM và tam giác CMA có:
BM = CM (cmt)
góc BMD = CMA (đối đỉnh)
DM = AM (gt)
=> tam giác BDM = tam giác CMA (cgc)
=> BD = AC( 2 cạnh tương ứng)
góc ACM = góc DBM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong của 2 đường thẳng BD và AC
=> BD//AC
Cho \(\Delta ABC\), vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh: \(\Delta ABM=\Delta DCM\)
b) chứng minh: AB // DC
c) Kẻ BE \(\perp\)AM ( E \(\in\)AM) CF \(\perp\)DM. Chứng minh : M là trung điểm của EF
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
Cho hình chữ nhật ABCD có AB = 6cm, BC = 8cm. Vẽ BH vuông góc với AC (H \(\in\) AC )
a) C/m: \(\Delta\)BHC \(\sim\) \(\Delta\)CDA
b) Tính diện tích \(\Delta\)BHC
c) Gọi M, B lần lượt là trung điểm của AH và BH, tia MN cắt BC tại E. Chứng minh \(\Delta\)CEH \(\sim\) \(\Delta\)CMB
Cho hình bình hành ABCD. Gọi M là 1 điểm nằm trong hình bình hành . Chứng minh rằng tổng diện tích của \(\Delta ABM\)và \(\Delta ACM\)bằng tổng diện tích của \(\Delta BCM\)và\(\Delta DAM\)
cho tam giác nhọn ABC ( AB=AC ). gọi M là trung điểm BC. trên tia đối của tia MA lấy D sao cho MD=MA
a, chứng minh Δ ABM= ΔDCM
b, kẻ AH vuông góc với BC ( Hϵ BC ). vẽ E sao cho H là trung điểm của EA. chứng minh BE=CD
cho \(\Delta\)ABC ,có AB=AC. Gọi M là trung điểm của cạnh BC.
a, c/m \(\Delta ABM=\Delta ACM\) và AM\(\perp\)BC.
b,Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. c/m : MD = ME.
c, Gọi N là trung điểm của DB . Trên tia đối của tia NM lấy điểm K . sao cho NK = NM. Chứng minh các điểm K, D, E thẳng hàng.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Cho tam giác ABC ,M là điểm bất kì trên cạnh BC ,I là trung điểm của cạnh AC.Gọi D là điểm đối xứng với M qua I
a) Tứ giác ABCD là hình gì?chứng minh
b)xác định vị trí của M trên cạnh BC để
DCM là hình chữ nhật
c) với vị trí vừa tìm được của điểm M .Tam giác ABCD phải thêm điều kiện gì để ADCM là hình vuông
d)chứng minh rằng :SABCD nhỏ hơn hoặc bằng AM.BC