Những câu hỏi liên quan
NN
Xem chi tiết
TT
Xem chi tiết
LH
10 tháng 6 2021 lúc 14:55

\(sin\dfrac{3x}{2}\left(cosx+cos4x+cos7x\right)\)

\(=\)\(sin\dfrac{3x}{2}.cosx+sin\dfrac{3x}{2}.cos4x+sin\dfrac{3x}{2}.cos7x=\dfrac{1}{2}\left[sin\dfrac{x}{2}+sin\dfrac{5x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{5x}{2}\right)+sin\dfrac{11x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{11x}{2}\right)+sin\dfrac{17x}{2}\right]\)

\(=\dfrac{1}{2}\left(sin\dfrac{x}{2}+sin\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.2.sin\dfrac{9x}{2}.cos4x=sin\dfrac{9x}{2}.cos4x\) 

\(sin\dfrac{3x}{2}\left(sinx+sin4x+sin7x\right)\)

\(=sin\dfrac{3x}{2}.sinx+sin\dfrac{3x}{2}.sin4x+sin\dfrac{3x}{2}.sin7x\)\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{5x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-5x}{2}-cos\dfrac{11x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-11x}{2}-cos\dfrac{17x}{2}\right)\)

\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.-2.sin\dfrac{9x}{2}.sin\left(-4x\right)=sin\dfrac{9x}{2}.sin4x\)

Có \(\dfrac{cos7x+cos4x+cosx}{sin7x+sin4x+sinx}\)

\(=\dfrac{sin\dfrac{3x}{2}\left(cos7x+cos4x+cosx\right)}{sin\dfrac{3x}{2}\left(sin7x+sin4x+sinx\right)}\)\(=\dfrac{sin\dfrac{9x}{2}.cos4x}{sin\dfrac{9x}{2}.sin4x}\)\(=\dfrac{cos4x}{sin4x}\)

\(\Rightarrow\dfrac{cos4x}{sin4x}=\dfrac{1}{2}\)

\(\Leftrightarrow2cos4x=sin4x\)

\(\Leftrightarrow4.cos^24x=sin^24x\)

\(\Leftrightarrow4.cos^24x=1-cos^24x\)\(\Leftrightarrow cos^24x=\dfrac{1}{5}\Leftrightarrow\dfrac{1+cos8x}{2}=\dfrac{1}{5}\)

\(\Leftrightarrow cos8x=-\dfrac{3}{5}\)

Vậy..

Bình luận (5)
H24
Xem chi tiết
NH
14 tháng 8 2016 lúc 22:30

Hỏi đáp Toán

Bình luận (0)
H24
Xem chi tiết
LH
28 tháng 5 2021 lúc 9:21

\(\Leftrightarrow1-cos4x+sin7x-1=sinx\)

\(\Leftrightarrow sin7x-sinx-cos4x=0\)

\(\Leftrightarrow2.cos4x.sin3x-cos4x=0\)

\(\Leftrightarrow cos4x\left(2.sin3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\3x=\dfrac{\pi}{6}+k2\pi\\3x=\pi-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\) (\(k\in Z\))

Kết luận:...

Bình luận (0)
JE
Xem chi tiết
NL
25 tháng 7 2020 lúc 15:53

a/

\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)

\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{16}+\frac{k\pi}{2}\\x=\frac{5\pi}{16}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 16:02

b/

Câu này đề hơi kì quái, bạn coi lại đề được ko? Biến đổi mấy cách vẫn thấy ko ổn

c/

\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\left(1\right)\\2sinx-cosx+1=1-cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-1\Leftrightarrow\pi x=\pi+k2\pi\)

\(\left(2\right)\Leftrightarrow2sinx=0\Rightarrow sinx=0\)

\(\Rightarrow x=k\pi\)

Kết hợp lại ta được \(x=k\pi\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 16:06

d/

\(\Leftrightarrow2sin8x.cosx=cos\left(\frac{\pi}{2}-2x\right)+1-1-cos\left(\frac{\pi}{2}+4x\right)\) (hạ bậc vế phải)

\(\Leftrightarrow2sin8x.cosx=sin2x+sin4x\)

\(\Leftrightarrow2sin8x.cosx=2sin3x.cosx\)

\(\Leftrightarrow cosx\left(sin8x-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin8x=sin3x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=3x+k2\pi\\8x=\pi-3x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết