Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

JE

giải các pt

a) \(sin^3x.cosx-sinx.cos^3x=\frac{\sqrt{2}}{8}\)

b) \(sin^3x-cos^24x=sin^25x-cos^26x\)

c) \(\left(2sinx-cosx+1\right)\left(1+cosx\right)=sin^2x\)

d) \(sin7x+sin9x=2\left[cos^2\left(\frac{\pi}{4}-x\right)-cos^2\left(\frac{\pi}{4}+2x\right)\right]\)

NL
25 tháng 7 2020 lúc 15:53

a/

\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)

\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{16}+\frac{k\pi}{2}\\x=\frac{5\pi}{16}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 16:02

b/

Câu này đề hơi kì quái, bạn coi lại đề được ko? Biến đổi mấy cách vẫn thấy ko ổn

c/

\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\left(1\right)\\2sinx-cosx+1=1-cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-1\Leftrightarrow\pi x=\pi+k2\pi\)

\(\left(2\right)\Leftrightarrow2sinx=0\Rightarrow sinx=0\)

\(\Rightarrow x=k\pi\)

Kết hợp lại ta được \(x=k\pi\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 16:06

d/

\(\Leftrightarrow2sin8x.cosx=cos\left(\frac{\pi}{2}-2x\right)+1-1-cos\left(\frac{\pi}{2}+4x\right)\) (hạ bậc vế phải)

\(\Leftrightarrow2sin8x.cosx=sin2x+sin4x\)

\(\Leftrightarrow2sin8x.cosx=2sin3x.cosx\)

\(\Leftrightarrow cosx\left(sin8x-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin8x=sin3x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=3x+k2\pi\\8x=\pi-3x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 16:26

b/

\(sin^23x-cos^24x=sin^25x-cos^26x\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos6x-\frac{1}{2}-\frac{1}{2}cos8x=\frac{1}{2}-\frac{1}{2}cos10x-\frac{1}{2}-\frac{1}{2}cos12x\)

\(\Leftrightarrow cos6x+cos8x=cos10x+cos12x\)

\(\Leftrightarrow2cos7x.cosx=2cos11x.cosx\)

\(\Leftrightarrow cosx\left(cos11x-cos7x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos11x=cos7x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\11x=7x+k2\pi\\11x=-7x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{k\pi}{9}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
QN
Xem chi tiết
QN
Xem chi tiết
TY
Xem chi tiết
PP
Xem chi tiết
JE
Xem chi tiết
NN
Xem chi tiết