Những câu hỏi liên quan
NT
Xem chi tiết
NB
20 tháng 9 2021 lúc 13:00

Bài là tam giác vuông hả bạn?

Ta có : BC = BH + CH = \(\sqrt{2}+\sqrt{8}=3\sqrt{2}\)

Xét △ ABC vuông tại A, đường cao AH có:

\(AB^2\)=BH.BC ( hệ thức lượng trong tam giác vuông)

=> \(AB^2=\sqrt{2}.3\sqrt{2}=6\)

=>  \(AB=\sqrt{6}\)

\(AC^2=BC.HC\)

=> \(AC^2=\sqrt{8}.3\sqrt{2}=12\)

=>\(AC=2\sqrt{3}\)

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.\sqrt{6}.2\sqrt{6}=3\sqrt{2}\left(cm^2\right)\)

Bình luận (0)
DG
Xem chi tiết
NT
21 tháng 3 2021 lúc 20:44

uses crt;

var a,b,i,j:integer;

    st:string;

begin

clrscr;

repeat

write('Ban muon ve khong:'); readln(st);

if st='Yes' then

   begin

      write('Nhap chieu dai:'); readln(a);

      write('Nhap chieu rong:'); readln(b);

      for i:=1 to a do

        begin

           for j:=1 to b do

             write('*');

           writeln;

        end;

   end

else break;

until st='No'

readln;

end.

Bình luận (0)
NG
Xem chi tiết
BT
Xem chi tiết
NT
4 tháng 7 2023 lúc 23:11

góc xOy<góc xOz

=>Oy nằm giữa Ox và Oz

=>góc xOy+góc yOz=góc xOz

=>góc yOz=40 độ

Bình luận (0)
NA
Xem chi tiết
CL
Xem chi tiết
KK
11 tháng 3 2022 lúc 14:38

undefined

Bình luận (0)
LA
11 tháng 3 2022 lúc 14:38

chịu, lên mạng mà tra

Bình luận (0)
KH
11 tháng 3 2022 lúc 14:38

undefined

Bình luận (2)
KS
Xem chi tiết
NL
22 tháng 3 2023 lúc 9:52

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

Bình luận (0)
NL
22 tháng 3 2023 lúc 9:53

loading...

Bình luận (0)
H24
22 tháng 3 2023 lúc 9:55

( sử dụng thước vẽ lại cho chính xác nhé. )

a. xét tam giác HBA và tam giác CDB, ta có :

góc B là góc chung ( gt )

góc H = góc D = 90 độ

do đó : tam giác HBA đồng dạng tam giác CDB ( g - g )

b.

• AD/DB = DH/BC

mà BC = AD ( vì ABCD là hcn )

nên AD/BD = DH/AD

= AD . AD = DB . DH

=> AD^2 = DB . DH ( đpcm )

• vì AB = DC ( ABCD là hcn )

nên DC = 8 cm

áp dụng định lý pytago trong tam giác DBC vuông tại C, ta có:

DB^2 = BC^2 + CD^2

DB^2 = 8^2 + 6^2

DB^2 = 64 + 36

DB^2 = 100

DB = căn bậc 2 của 100

DB = 10 ( cm )

vậy DB = 10 cm

loading...  

Bình luận (1)
KL
Xem chi tiết
HJ
Xem chi tiết
NT
2 tháng 10 2021 lúc 23:24

Bài 10:

a: \(\overrightarrow{AB}+\overrightarrow{BO}+\overrightarrow{OA}\)

\(=\overrightarrow{AO}+\overrightarrow{OA}=\overrightarrow{0}\)

b: \(\overrightarrow{OA}+\overrightarrow{BC}+\overrightarrow{DO}+\overrightarrow{CD}\)

\(=\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{BD}\)

\(=\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{BA}\)

Bình luận (0)