KS

Mọi người giúp em làm bài toán hình này với ạ, kèm vẽ hình luôn nhé ạ. Em cảm ơn nhiều. - Cho hình chữ nhật ABCD có AB=8cm, BC= 6cm. Vẽ đường cao AH của tam giác ABD. a) chứng minh tam giác HBA đồng dạng với tam giác CDB b) Chứng minh: AD^2 = DH. DB c) Tính độ dài đoạn thẳng DH và AH

NL
22 tháng 3 2023 lúc 9:52

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

Bình luận (0)
NL
22 tháng 3 2023 lúc 9:53

loading...

Bình luận (0)
H24
22 tháng 3 2023 lúc 9:55

( sử dụng thước vẽ lại cho chính xác nhé. )

a. xét tam giác HBA và tam giác CDB, ta có :

góc B là góc chung ( gt )

góc H = góc D = 90 độ

do đó : tam giác HBA đồng dạng tam giác CDB ( g - g )

b.

• AD/DB = DH/BC

mà BC = AD ( vì ABCD là hcn )

nên AD/BD = DH/AD

= AD . AD = DB . DH

=> AD^2 = DB . DH ( đpcm )

• vì AB = DC ( ABCD là hcn )

nên DC = 8 cm

áp dụng định lý pytago trong tam giác DBC vuông tại C, ta có:

DB^2 = BC^2 + CD^2

DB^2 = 8^2 + 6^2

DB^2 = 64 + 36

DB^2 = 100

DB = căn bậc 2 của 100

DB = 10 ( cm )

vậy DB = 10 cm

loading...  

Bình luận (1)

Các câu hỏi tương tự
2K
Xem chi tiết
NH
Xem chi tiết
BT
Xem chi tiết
PB
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
QB
Xem chi tiết
YC
Xem chi tiết