xy=x+y
xy=x-y
(y+1)(y+3)<0
Chứng minh: x y + y x x - y x y = x - y với x > 0 và y > 0
Ta có:
Vế trái bằng vế phải nên đẳng thức được chứng minh
Bài 1: Thu gọn các đơn thức sau:
a) (-xy). (3x2yz2) b) x2y (2xy)3
c) x2yxy2z.x3y
Bài 2: Tính giá trị biểu thức
a)3x2y - 2xy2 + 4 - x2y - 2x2y tại x=-2; y=1/3
b) x2 + 2xy - 3x3 + 2y3 + 3x3 - y3 tại x=5; y=4
c) xy - x2y2 + x4y4 - x6y6 + x8y8 tại x=-1; y=-1
A=XxX-YxY......B=(X+Y)x(X-Y)
trả lời hộ mình cái
b) Chứng minh:
x + y x y - y x x y = x - y (với x>0;y>0)
b) Với x > 0; y > 0 ta có:
x + y x y - y x x y = x y x - y x y = x + y x - y = x - y
= ( x + y )( x - y ) = x - y
Cho P(x,y) = 4xy(x2 + y2) – 6(x3 + y3 x2yxy2) + 9(x2+y2 )
Phân tích đa thức thành nhân tử
(căn x-căn y)/xy căn xy/((1/x+1/y)*1/(x+y+2 căn xy)+2/(căn x + căn y)^3*(1/ căn x+1/ căn y))v
Gọi T là tổng, H là hiệu của hai đa thức \(3{x^2}y - 2x{y^2} + xy\) và \( - 2{x^2}y + 3x{y^2} + 1\). Khi đó:
A. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\).
B. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\)
C. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} - xy - 1\)
D. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y + 5x{y^2} + xy - 1\)
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
Giải các hệ phương trình
a / x+y + xy +1=0và x^2+y^3-x-y=22
b, x+y+xy=7 va x^2+y^2+xy=13
c, x^3+y^3=1 va x^5 +y^5=x^2+y^2
d, x^4+y^4=97 va xy(x^2+y^2)=78
1.(\(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\)) :(\(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\))
rút gọn
1, 1/7 x^2 y^3 ( -14/3 xy^2 ) -1/2 xy ( x^2 y^4 )
2, ( 3xy )^2 ( -1/2 x^3 y^2 )
3) ( -1/4 x^2 y )^2 ( 2/3 xy^4)^3
1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)
\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)
\(=\dfrac{1}{3}x^6y^{10}\)
2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)
\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)
\(=-\dfrac{9}{2}x^4y^4\)
3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)
\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)
\(=\dfrac{1}{54}x^7y^{14}\)