Giải pt Sinx+cosx=0
Giải pt
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Giải pt: sinx - cosx ( 3tanx + 2 ) = 0
\(\Leftrightarrow sinx-cosx.\dfrac{3sinx}{cosx}-2cosx=0\left(ĐK:x\ne\dfrac{\pi}{2}+k\pi\right)\\ \Leftrightarrow sinx+cosx=0\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\\ \Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(tm\right)\)
giải các pt sau:
a) cosx(1-cos2x) - sin^2x = 0
b) sin3x + cos2x = 1 + 2sinxcos3x
c) ( cosx+1)(sinx - cosx + 3) = sin^2x
d) (1+sinx)(cosx-sinx) = cos^2x
a.
\(\Leftrightarrow cosx\left[1-\left(1-2sin^2x\right)\right]-sin^2x=0\)
\(\Leftrightarrow2sin^2x.cosx-sin^2x=0\)
\(\Leftrightarrow sin^2x\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
b.
Câu b chắc chắn đề đúng chứ bạn? Vế phải ấy?
c/
\(\left(1+cosx\right)\left(sinx-cosx+3\right)=1-cos^2x\)
\(\Leftrightarrow\left(1+cosx\right)\left(sinx-cosx+3\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1+cosx\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow cosx=-1\)
\(\Leftrightarrow x=\pi+k2\pi\)
d.
\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)=1-sin^2x\)
\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)-\left(1+sinx\right)\left(1-sinx\right)=0\)
\(\Leftrightarrow\left(1+sinx\right)\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=k2\pi\end{matrix}\right.\)
Giải pt
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(sinx-\sqrt{3}cosx=2sin5x\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
\(sinx+cosxsin2x+\sqrt{3}cos3x=2\left(cos4x-sin^3x\right)\)
\(tanx-3cotx=4\left(sinx+\sqrt{3}cosx\right)\)
1.
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)
2.
\(sinx-\sqrt{3}cosx=2sin5\text{}x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)
Giải pt
\(cotx-tanx=sinx+cosx\)
\(sinx+cosx+\dfrac{1}{sinx}+\dfrac{1}{cosx}=\dfrac{10}{3}\)
1.
ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(cotx-tanx=sinx+cosx\)
\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)
\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)
\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)
\(\Leftrightarrow t^2+2t-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)
giải các pt
a) \(sinx+cosx-2sin2x-1=0\)
b) \(sinx+cosx+3sinx.cosx-1=0\)
c) \(sinx-2sin2x=\frac{1}{2}-cosx\)
d) \(6\left(sinx-cosx\right)-1=sinx.cosx\)
a/
\(\Leftrightarrow sinx+cosx-4sinx.cosx-1=0\)
Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(\Rightarrow t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)
Pt trở thành:
\(t-2\left(t^2-1\right)-1=0\)
\(\Leftrightarrow-2t^2+t+1=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=\pi-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)
b/
Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)
Pt trở thành:
\(t+\frac{3}{2}\left(t^2-1\right)-1=0\)
\(\Leftrightarrow3t^2+2t-5=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-1\\t=\frac{5}{3}>\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sinx+cosx-4sinx.cosx=\frac{1}{2}\)
Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\) với \(\left|t\right|\le\sqrt{2}\)
\(sinx.cosx=\frac{t^2-1}{2}\)
Pt trở thành:
\(t-2\left(t^2-1\right)=\frac{1}{2}\)
\(\Leftrightarrow-4t^2+2t+3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{1+\sqrt{13}}{4}\\t=\frac{1-\sqrt{13}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{1+\sqrt{13}}{4\sqrt{2}}\\sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{13}}{4\sqrt{2}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=arcsin\left(\frac{1+\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=\pi-arcsin\left(\frac{1+\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=arcsin\left(\frac{1-\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\\x+\frac{\pi}{4}=\pi-arcsin\left(\frac{1-\sqrt{13}}{4\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
1/ Tìm m để pt có nghiệm
|sinx+cosx| - sin2x=m
2/ Cho pt: 2cos2x+ sin2x.cosx + sinx.cos2x=m.(sinx + cosx)
A. Giải pt khi m=2
B. Tìm m để pt có nghiệm x thuộc [0; pi/2]
giải các pt
a) \(sinx+cosx-\sqrt{2}sin2x=0\)
b) \(sin^2x+sin2x=3cos^2x\)
c) \(sinx\left(1-sinx\right)=cosx\left(cosx-1\right)\)
d) \(2\left(sin^3x-cos^3x\right)=\sqrt{3}.cos2x\left(sinx-cosx\right)\)
a/
\(\Leftrightarrow sinx+cosx=\sqrt{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}sin2x\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=sin2x\)
\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{\pi}{4}+k2\pi\\2x=\frac{3\pi}{4}-x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/
\(\Leftrightarrow\frac{1-cos2x}{2}+sin2x=\frac{3\left(1+cos2x\right)}{2}\)
\(\Leftrightarrow sin2x-2cos2x=1\)
\(\Leftrightarrow\frac{1}{\sqrt{5}}sin2x-\frac{2}{\sqrt{5}}cos2x=\frac{1}{\sqrt{5}}\)
Đặt \(\frac{1}{\sqrt{5}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Leftrightarrow sin2x.cosa-cos2a.sina=cosa\)
\(\Leftrightarrow sin\left(2x-a\right)=cosa=sin\left(\frac{\pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-a=\frac{\pi}{2}-a+k2\pi\\2x-a=a-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=a-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)
\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)
\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)
giải pt : sinx + \(\sqrt{3}\) cosx + \(\sqrt{sinx+\sqrt{3}cosx}\) = 2
Điều kiện xác định:
\(sinx+\sqrt{3}cosx\ge0\Leftrightarrow tanx\ge-\sqrt{3}\Leftrightarrow x\ge\dfrac{2\pi}{3}+k\pi\)
Đặt \(t=\sqrt{sinx+\sqrt{3}cosx},t\ge0\)
Phương trình đã cho trở thành:
\(t^2+t-2=0\Leftrightarrow\left(t-1\right)\left(t+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(\text{nhận}\right)\\t=-2\left(\text{loại}\right)\end{matrix}\right.\)
Với t = 1, ta có
\(sinx+\sqrt{3}cosx=1\Leftrightarrow2.\left(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right)=1\)
\(\Leftrightarrow2.cos\left(x-\dfrac{\pi}{6}\right)=1\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
Đối chiếu với điều kiện xác định, ta phải có
\(\left\{{}\begin{matrix}\dfrac{\pi}{2}+k2\pi\ge\dfrac{2\pi}{3}+k\pi\\-\dfrac{\pi}{6}+k2\pi\ge\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ge\dfrac{1}{6}\\k\ge\dfrac{5}{6}\end{matrix}\right.\) \(\Rightarrow k\ge1\)
Vậy phương trình có hai họ nghiệm là \(x=\dfrac{\pi}{2}+k2\pi\) và \(x=-\dfrac{\pi}{6}+k2\pi\) với \(k\in Z,k\ge1\)