So sánh ( sử dụng phương pháp trung gian): B) 5217 và 11972
So sánh ( sử dụng phương pháp trung gian): 339 Và 1121
Ta có:
\(3^{39}< 3^{42}\)
Mà: \(3^{42}=\left(3^2\right)^{21}=9^{21}\)
Lại có: \(9< 11\Rightarrow9^{21}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
So sánh : 201^60 và 398^45
(bằng phương pháp so sánh lũy thừa trung gian)
\(201^{60}=\left(201^4\right)^{15}=1944810000^{15}\)
\(398^{45}=\left(398^3\right)^{15}=63044792^{15}\)
Do \(1944810000>63044792\)
\(\Rightarrow1944810000^{15}>63044792^{15}\)
\(\Rightarrow201^{60}>398^{45}\)
Ta có:
\(201^{60}>200^{60};398^{45}< 400^{45}\)
\(200^{60}=\left(2.100\right)^{60}=2^{60}.100^{60}=2^{60}.\left(10^2\right)^{60}\)
\(=2^{60}.10^{120}=2^{60}.10^{30}.10^{90}\)
\(400^{45}=\left(2.100\right)^{45}=2^{45}.100^{45}=2^{45}.\left(10^2\right)^{45}\)
\(=2^{45}.10^{90}\)
Mà \(2^{60}.10^{30}.10^{90}>2^{45}.10^{90}\)
\(\Rightarrow200^{60}>400^{45}\)
\(\Rightarrow201^{60}>200^{60}>400^{45}>398^{45}\)
\(\Rightarrow201^{60}>398^{45}\)
`#3107`
\(201^{60}\text{ và }398^{45}\)
Ta có:
\(201^{60}=\left(201\right)^{15\cdot4}=\left(201^4\right)^{15}=1632240801^{15}\)
\(398^{45}=\left(398\right)^{15\cdot3}=\left(398^3\right)^{15}=63044792^{15}\)
Vì `63044792 < 1632240801 \Rightarrow`\(1632240801^{15}< 63044792^{15}\)
\(\Rightarrow201^{60}>398^{45}\)
Vậy, \(201^{60}>398^{45}.\)
câu hỏi : em hãy so sánh phương pháp chế biến thực phẩm có sử dụng nhiệt và phương pháp chế biến thực phẩm.
| phương pháp có sử dụng nhiệt | phương pháp không sử dụng nhiệt |
Cách làm | Là phương pháp làm chín thực phẩm trong nước hoặc bằng sức nóng trực tiếp của nguồn nhiệt. | Là phương pháp trộn các thực phẩm hoặc làm thực phẩm lên men vi sinh trong thời gian cần thiết |
Ưu điểm | Phù hợp chế biến nhiều loại thực phẩm, hương vị hấp dẫn | Dễ làm, món ăn ít dầu mỡ |
Hạn chế | Thời gian chế biến lâu | Khó khăn trong lựa chọn thực phẩm và bảo quản |
Bài 24 so sánh các số sau
a 5217và 11972 b 2100và10249
c 912và 277 d 12580và 25118
e 540 và 62010 f 2711 và 818
giúp mình với
a. \(5^{127}=5.5^{126}=5.125^{72}>119^{72}\)
\(\Rightarrow5^{217}>119^{72}\)
b. \(2^{1000}=\left(2^5\right)^{200}=32^{200}\)
\(5^{400}=\left(5^2\right)^{200}=25^{200}\)
\(\Rightarrow2^{1000}>5^{400}\)
c. \(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
\(\Rightarrow9^{12}>27^7\)
d. \(125^{80}=\left(5^3\right)^{80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{236}\)
\(\Rightarrow125^{80}>25^{118}\)
e. \(5^{40}=\left(5^4\right)^{10}=625^{10}\)
\(\Rightarrow5^{40}>620^{10}\)
f. \(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
\(\Rightarrow27^{11}>81^8\)
a) Hãy tính số trung bình, trung vị, tứ phân vị của thời gian sử dụng mạng xã hội trên hai nhóm học sinh nữa và học sinh năm để so sánh thời gian sử dụng mạng xã hội của hai nhóm.
| Số trung bình | \({Q_1}\) | Trung vị (\({Q_2}\)) | \({Q_3}\) |
Nữ |
|
|
|
|
Nam |
|
|
|
|
b) Hãy tính một vài số đo độ phân tán để so sánh sự biến động của thời gian sử dụng mạng xã hội của hai nhóm học sinh.
| Khoảng biến thiên | Khoảng tứ phân vị | Độ lệch chuẩn |
Nữ |
|
|
|
Nam |
|
|
|
a)
Thời gian dùng MXH | 30 | 45 | 60 | 75 | 80 | 90 | 120 |
Số HS nam | 1 | 1 | 4 | 2 | 1 | 2 | 3 |
Thời gian dùng MXH | 30 | 45 | 60 | 75 | 80 | 90 | 120 |
Số HS nữ | 3 | 2 | 3 | 1 | 2 | 2 | 2 |
| Số trung bình | \({Q_1}\) | Trung vị (\({Q_2}\)) | \({Q_3}\) |
Nữ | 67,1875 | 45 | 60 | 85 |
Nam | 77,5 | 60 | 75 | 90 |
+) số trung bình: các HS nam sử dụng mạng xã hội nhiều hơn so với HS nữ
+) trung vị: các HS nam sử dụng mạng xã hội nhiều hơn so với HS nữ
+) tứ phân vị: thời gian sử dụng phân bố đồng đều ở cả năm và nữ.
b)
| Khoảng biến thiên | Khoảng tứ phân vị | Độ lệch chuẩn |
Nữ | 90 | 40 | 27,78 |
Nam | 90 | 30 | 27,1 |
Theo kết quả trên: Thời gian sử dụng mạng xã hội của các học sinh nữ có nhiều biến động hơn (một chút) so với các học sinh nam.
Khi nào ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian?
A. Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai
B. Khi tử số của phân số thứ nhất lớn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu của phân số thứ hai.
C. Cả A và B đều sai
D. Cả A và B đều đúng
Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc khi tử số của phân số thứ nhất lớn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu số của phân số thứ hai thì ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian.
Do đó cả hai đáp án A và B đều đúng
Đáp án cần chọn là D
Khi nào ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian?
A. Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai
B. Khi tử số của phân số thứ nhất lơn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu số của phân số thứ hai
C. Cả A và B đều sai
D. Cả A và B đều đúng
Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc khi tử số của phân số thứ nhất lớn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu số của phân số thứ hai thì ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian.
Do đó cả hai đáp án A và B đều đúng.
Đáp án D.
So sánh 22/49 và 3/8 bằng cách sử dụng phân áo trung gian.
Ta có:
\(\frac{22}{49}>\frac{3}{7}\)
Mà \(\frac{3}{7}>\frac{3}{8}\)
=>\(\frac{22}{49}>\frac{3}{8}\)
Cái này có Phân số trung gian là:\(\frac{21}{49}=\frac{3}{7}\)
Đặt câu theo yêu cầu
A tả dòng sông có sử dụng biện pháp so sánh
có sử dụng biện pháp nhân hóa
b mặt biển sử dụng biện pháp so sánh
biện pháp nhân hóa