Những câu hỏi liên quan
VN
Xem chi tiết
NL
1 tháng 9 2021 lúc 22:42

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)

\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)

\(\Rightarrow y=2x+3\)

\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 5 2019 lúc 17:30

Bình luận (0)
GG
Xem chi tiết
NL
17 tháng 2 2022 lúc 23:52

\(x+y\le xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\le1\)

\(M=\dfrac{1}{2\left(x^2+y^2\right)+y^2}+\dfrac{1}{2\left(x^2+y^2\right)+x^2}\le\dfrac{1}{4xy+y^2}+\dfrac{1}{4xy+x^2}\)

\(B\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)+\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{x^2}\right)=\dfrac{1}{25}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}+\dfrac{6}{xy}\right)\)

\(M\le\dfrac{1}{25}\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right]=\dfrac{1}{10}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le\dfrac{1}{10}\)

\(M_{max}=\dfrac{1}{10}\) khi \(x=y=2\)

Bình luận (2)
PB
Xem chi tiết
CT
3 tháng 7 2019 lúc 14:16

Đáp án đúng : A

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 11 2018 lúc 9:24


Bình luận (0)
QH
Xem chi tiết
NL
28 tháng 3 2021 lúc 0:57

Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 4 2017 lúc 4:16

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 2 2017 lúc 2:08

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 7 2017 lúc 7:52

Đáp án đúng : C

Bình luận (0)