Chương 1: MỆNH ĐỀ, TẬP HỢP

AN

cho hai số thực x,y thỏa mãn 2x+3y\(\le7\). Giá trị lớn nhất của biểu thức P=x+y+xy là

NL
10 tháng 5 2021 lúc 14:36

Đề bài sai/thiếu, biểu thức này không thể tồn tại max nếu x; y chỉ là số thực (lấy ví dụ, \(x=y=-1000\), như vậy \(2x+3y< 0\le7\) phù hợp điều kiện, nhưng P lại ra 1 kết quả khổng lồ)

P chỉ tồn tại max khi x; y có thêm điều kiện (ví dụ x; y dương hoặc không âm)

Khi đó: \(2x+3y\le7\Rightarrow3y\le7-2x\Rightarrow y\le\dfrac{7}{3}-\dfrac{2}{3}x\)

Từ đó ta có:

\(P=x+y\left(x+1\right)\le x+\left(\dfrac{7}{3}-\dfrac{2}{3}x\right)\left(x+1\right)\)

\(\Rightarrow P\le-\dfrac{2}{3}x^2+\dfrac{8}{3}x+\dfrac{7}{3}=-\dfrac{2}{3}\left(x-2\right)^2+5\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(2;1\right)\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
AN
Xem chi tiết
LN
Xem chi tiết
QA
Xem chi tiết
PH
Xem chi tiết
AN
Xem chi tiết
CL
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết