Những câu hỏi liên quan
NL
8 tháng 8 2020 lúc 10:11

\(\Leftrightarrow4sin^23x.sin^2x=6+2sin3x\)

Do \(\left\{{}\begin{matrix}sin^23x\le1\\sin^2x\le1\end{matrix}\right.\) \(\Rightarrow VT\le4\)

\(sin3x\ge-1\Rightarrow VP=6+2sin3x\ge4\)

\(\Rightarrow VP\ge VT\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin^23x=1\\sin^2x=1\\sin3x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin^2x=1\\sin3x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin^2x=1\\3sinx-4sin^3x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin^2x=1\\sinx\left(3-4sin^2x\right)=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin^2x=1\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

Bình luận (0)
DN
Xem chi tiết
LH
3 tháng 7 2021 lúc 21:51

a) Pt \(\Leftrightarrow3.cos4x-\left(cos6x+1\right)=1\)

\(\Leftrightarrow3cos4x-cos6x-2=0\)

Đặt \(t=2x\)

Pttt:\(3cos2t-cos3t-2=0\)

\(\Leftrightarrow3\left(2cos^2t-1\right)-\left(4cos^3t-3cost\right)-2=0\)

\(\Leftrightarrow-4cos^3t+6cos^2t+3cost-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cost=1\\cost=\dfrac{1+\sqrt{21}}{4}\left(vn\right)\\cost=\dfrac{1-\sqrt{21}}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=k2\pi\\t=\pm arc.cos\left(\dfrac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\dfrac{1}{2}.arccos\left(\dfrac{1-\sqrt{21}}{4}\right)+k\pi\end{matrix}\right.\) (\(k\in Z\))

Vậy...

a2) \(2cos2x-8cosx+7=\dfrac{1}{cosx}\) (ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\))

\(\Leftrightarrow2.\left(2cos^2x-1\right)-8cosx+7=\dfrac{1}{cosx}\)

\(\Leftrightarrow2.\left(2cos^2x-1\right)cosx-8cos^2x+7cosx=1\)

\(\Leftrightarrow4cos^3x-8cos^2x+5cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) (tm) (\(k\in Z\))

Vậy...

a3) Đk: \(x\ne-\dfrac{\pi}{4}+k\pi;x\ne\dfrac{\pi}{2}+k\pi\)

Pt \(\Leftrightarrow\dfrac{\left(1+sinx+1-2sin^2x\right).\dfrac{1}{\sqrt{2}}\left(sinx+cosx\right)}{1+\dfrac{sinx}{cosx}}=\dfrac{1}{\sqrt{2}}cosx\)

\(\Leftrightarrow\dfrac{\left(-2sin^2x+sinx+2\right).\left(sinx+cosx\right)cosx}{cosx+sinx}=cosx\)

\(\Leftrightarrow\left(2+sinx-2sin^2x\right).cosx=cosx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\2+sinx-2sin^2x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) (\(k\in Z\))

Vậy...

Bình luận (2)
LH
3 tháng 7 2021 lúc 21:58

a4) Pt \(\Leftrightarrow9sinx+6cosx-6sinx.cosx+1-2sin^2x=8\)

\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sin^2x-9sinx+7\right)=0\)

\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sinx-7\right)\left(sinx-1\right)=0\)

\(\Leftrightarrow\left(1-sinx\right)\left(6cosx+2sinx+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\6cosx+2sinx=7\left(vn\right)\end{matrix}\right.\) (\(6cosx+2sinx=7\) vô nghiệm do \(6^2+2^2< 7^2\))

\(\Rightarrow sinx=1\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi;k\in Z\)

Vậy...

Bình luận (0)
TT
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
HP
15 tháng 8 2021 lúc 21:17

ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)

\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)

\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)

\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)

\(\Leftrightarrow2cos^22x-2cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 10 2021 lúc 12:22

a

\(\Leftrightarrow\left(3sinx-sin3x\right)cos3x+\left(3cosx+cos3x\right)sin3x+3\sqrt{3}cos4x=3\)

\(\Leftrightarrow\left(sinx.cos3x+sin3x.cosx\right)+\sqrt{3}cos4x=1\)

\(\Leftrightarrow sin4x+\sqrt{3}cos4x=1\)

Tới đây thôi, mình lười ghi rồi =))

b

\(\Leftrightarrow\left(1-cos2x\right)\left(2sin^2x-1\right)\left(2sin^2+1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)

\(\Leftrightarrow\left(1-cos2x\right)\left(-cos2x\right)\left(2-cos2x\right)=cos2x\left(7cos^22x+3cos2x+4\right)\)

\(\Leftrightarrow-cos^22x+3cos2x-2=7cos^22x+3cos2x+4\)

\(\Leftrightarrow4cos^22x+3=0\)

=> pt vô nghiệm

Bình luận (1)
JE
Xem chi tiết
NL
25 tháng 7 2020 lúc 15:36

a/

DKXD: ...

\(\Leftrightarrow-cos2x.tan^22x+3.cos2x=0\)

\(\Leftrightarrow cos2x\left(3-tan^22x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\tan^22x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\2x=\frac{\pi}{3}+k\pi\\2x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{6}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 15:42

b/

DKXD: ...

\(\Leftrightarrow\frac{sinx}{cosx}+\frac{sin2x}{cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sinx.cos2x+sin2x.cosx}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sin\left(2x+x\right)}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow sin3x\left(\frac{1}{cosx.cos2x}-\frac{2}{sin2x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\left(1\right)\\2cosx.cos2x=sin2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3sinx-4sin^3x=0\) (tìm nghiệm thẳng bằng \(3x=k\pi\) rồi dựa vào đường tròn lượng giác loại nghiệm cũng được)

\(\Leftrightarrow sinx\left(3-4sin^2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(l\right)\\sinx=\pm\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow2cosx.cos2x=2sinx.cosx\)

\(\Leftrightarrow2cosx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(l\right)\\cos2x=sinx=cos\left(\frac{\pi}{2}-x\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\left(l\right)\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 15:44

c/

\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)

\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NC
13 tháng 9 2021 lúc 15:25

\(\dfrac{cos4x}{cos2x}=tan2x\). ĐKXĐ : \(x\ne\dfrac{\pi}{4}+k.\dfrac{\pi}{2}\), k là số nguyên (tức là sin2x khác 1 và -1)

⇒ cos4x = sin2x

⇔ 1 - 2sin22x = sin2x

⇔ 2sin22x + sin2x - 1 = 0 

⇔ \(\left[{}\begin{matrix}sin2x=-1\left(/\right)\\sin2x=\dfrac{1}{2}\left(V\right)\end{matrix}\right.\)

Mà x ∈ \(\left(0;\dfrac{\pi}{2}\right)\)

⇒ \(\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=\dfrac{\pi}{3}\end{matrix}\right.\)

 

Bình luận (0)
PD
Xem chi tiết
H24
10 tháng 9 2017 lúc 21:49

Đăng lên chô khác đi :D đây toàn lớp THCS có lẽ ít ai giải :v
vị dụ VMF , HMF, h,...................................><

Bình luận (0)