\(VT=\left(cos2x-cos4x\right)^2=\left(-2cos^22x+cos2x+1\right)^2\le\left(\dfrac{9}{8}\right)^2\\ VP=6+2sin3x\ge4\\ \rightarrow VT< VP\)
Suy ra phương trình vô nghiệm.
\(VT=\left(cos2x-cos4x\right)^2=\left(-2cos^22x+cos2x+1\right)^2\le\left(\dfrac{9}{8}\right)^2\\ VP=6+2sin3x\ge4\\ \rightarrow VT< VP\)
Suy ra phương trình vô nghiệm.
\(\dfrac{cot^2x-tan^2x}{cos2x}=16\left(1+cos4x\right)\)
Giải pt
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(sin2x-cos2x+3sinx-cosx-1=0\)
Giải: \(\left(2cos2x-1\right).\left(sin2x+cos2x\right)=1\)
Giải phương trình:
\(1+\cos4x-2\sin^{2\left(x\right)}=0\)
Giải pt
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(sinx-\sqrt{3}cosx=2sin5x\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
\(sinx+cosxsin2x+\sqrt{3}cos3x=2\left(cos4x-sin^3x\right)\)
\(tanx-3cotx=4\left(sinx+\sqrt{3}cosx\right)\)
Giải: \(4sin^2\dfrac{x}{2}-\sqrt{3}.cos2x=1+2cos^2\left(x+\dfrac{3\pi}{4}\right)\)
Giai pt
\(5sinx-2=3\left(1-sinx\right)tan^2x\)
\(2.cos2x.cosx=1+cos2x+cos3x\)
\(cos2x+cosx=4sin^2\left(\dfrac{x}{2}\right)-1\)
Giai pt
\(5sinx-2=3\left(1-sinx\right)tan^2x\)
\(2.cos2x.cosx=1+cos2x+cos3x\)
\(cos2x+cosx+4sin^2\left(\dfrac{x}{2}\right)-1\)
a) Giải phương trình : \(\cos2x-\cos3x+\cos4x=0\)
b) Chứng minh rằng nếu tam giác ABC có số đo các góc là A, B, C thỏa mãn điều kiện \(\dfrac{\sin B}{\sin C}=2\cos A\) thì đó là tam giác cân