Những câu hỏi liên quan
JP
Xem chi tiết
NT
23 tháng 7 2023 lúc 19:48

a: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=-x\cdot cos\left(-x\right)=-x\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ

b: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=5\cdot sin^2\left(-x\right)+1=5\cdot sin^2x+1=f\left(x\right)\)

=>f(x) chẵn

c: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=sin\left(-x\right)\cdot cos\left(-x\right)=-sinx\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ

 

Bình luận (0)
VQ
Xem chi tiết
BD
Xem chi tiết
NL
9 tháng 8 2021 lúc 14:08

ĐKXĐ: 

\(sinx\ne1\Leftrightarrow\ne x\ne\dfrac{\pi}{2}+k2\pi\)

Bình luận (0)
VQ
Xem chi tiết
H24
Xem chi tiết
NT
14 tháng 7 2023 lúc 9:52

a: TXĐ: D=R

x^2;sin x đều liên tục trên R

=>f(x) liên tục trên R

b: TXĐ: D=R\{1}

x^4;-x^2;6/x-1 đều liên tục khi x thuộc (-vô cực;1) hoặc (1;+vô cực)

=>g(x) liên tục trên (-vô cực;1) và (1;+vô cực)

c: ĐKXĐ: x<>3; x<>-4

HS \(\dfrac{2x}{x-3}\) liên tục trên (-vô cực;3) và (3;+vô cực)

(x-1)/(x+4) liên tục trên (-vô cực;-4) và (-4;+vô cực)

=>h(x) liên tục trên từng khoảng xác định của nó

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 8 2023 lúc 20:26

1: cot x=-6 nên cosx/sinx=-6

=>cosx=-6*sinx

\(F=\dfrac{sinx-3\cdot cosx}{cosx+2\cdot sinx}=\dfrac{sinx+18\cdot sinx}{-6\cdot sinx+2\cdot sinx}=\dfrac{20}{-4}=-5\)

2: cotx=1

=>cosx/sinx=1

=>cosx=sinx

\(I=\dfrac{sin^3x-4\cdot sin^3x}{sinx+3sinx}=\dfrac{5\cdot sin^3x}{4\cdot sinx}=\dfrac{5}{4}\cdot sin^2x\)

\(1+cot^2x=\dfrac{1}{sin^2x}\)

=>\(\dfrac{1}{sin^2x}=1+1=2\)

=>sin^2=1/2

=>\(I=\dfrac{5}{4}\cdot\dfrac{1}{2}=\dfrac{5}{8}\)

3: cotx=3

=>cosx/sinx=3

=>cosx=3*sinx

1+cot^2x=1/sin^2x

=>\(\dfrac{1}{sin^2x}=1+9=10\)

=>\(sin^2x=\dfrac{1}{10}\)

\(I=\dfrac{2\cdot sin^3x+cos^3x}{4\cdot sinx-6\cdot cosx}\)

\(=\dfrac{2\cdot sin^3x+\left(3\cdot sinx\right)^3}{4\cdot sinx-6\cdot\left(3\cdot sinx\right)}=\dfrac{2\cdot sin^3x+27\cdot sin^3x}{4\cdot sinx-18\cdot sinx}\)

\(=\dfrac{29}{-14}\cdot sin^2x=\dfrac{-29}{14}\cdot\dfrac{1}{10}=-\dfrac{29}{140}\)

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 3 2019 lúc 22:09

Giả sử các biểu thức đã cho đều xác định

a/ \(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+\dfrac{sin^2x}{cos^2x}+1+tan^2x+tan^2x=1+2tan^2x\)

b/ \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{sin^2x+\left(1+cosx\right)^2}{\left(1+cosx\right)sinx}=\dfrac{sin^2x+cos^2x+2cosx+1}{\left(1+cosx\right)sinx}\)

\(=\dfrac{1+2cosx+1}{\left(1+cosx\right)sinx}=\dfrac{2+2cosx}{\left(1+cosx\right)sinx}=\dfrac{2\left(1+cosx\right)}{\left(1+cosx\right)sinx}=\dfrac{2}{sinx}\)

c/ \(\dfrac{1-sinx}{cosx}=\dfrac{\left(1-sinx\right)cosx}{cos^2x}=\dfrac{\left(1-sinx\right)cosx}{1-sin^2x}\)

\(\dfrac{\left(1-sinx\right)cosx}{\left(1-sinx\right)\left(1+sinx\right)}=\dfrac{cosx}{1+sinx}\)

Bình luận (0)
NL
2 tháng 3 2019 lúc 22:17

d/ \(\left(1-cosx\right)\left(1+cot^2x\right)=\left(1-cosx\right).\dfrac{1}{sin^2x}\)

\(=\dfrac{1-cosx}{1-cos^2x}=\dfrac{1-cosx}{\left(1-cosx\right)\left(1+cosx\right)}=\dfrac{1}{1+cosx}\)

e/ \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=1-\dfrac{sin^3x}{sinx\left(1+\dfrac{cosx}{sinx}\right)}-\dfrac{cos^3x}{cosx\left(1+\dfrac{sinx}{cosx}\right)}\)

\(=1-\left(\dfrac{sin^3x}{sinx+cosx}+\dfrac{cos^3x}{sinx+cosx}\right)=1-\left(\dfrac{sin^3x+cos^3x}{sinx+cosx}\right)\)

\(=1-\left(\dfrac{\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)}{sinx+cosx}\right)\)

\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)

f/ Bạn ghi đề sai à?

Bình luận (0)
NH
28 tháng 1 2020 lúc 10:35

câu f sai đề rồi

Bình luận (0)
 Khách vãng lai đã xóa
KH
Xem chi tiết
NT
14 tháng 8 2023 lúc 9:42

a: ĐKXĐ: 2*sin x+1<>0

=>sin x<>-1/2

=>x<>-pi/6+k2pi và x<>7/6pi+k2pi

b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)

mà 1+cosx>=0

nên 2-cosx>=0

=>cosx<=2(luôn đúng)

c ĐKXĐ: tan x>0

=>kpi<x<pi/2+kpi

d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)

=>cos(x-pi/4)<>1/2

=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi

=>x<>7/12pi+k2pi và x<>-pi/12+k2pi

e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi

=>x<>5/6pi+kpi và x<>kpi-pi/4

f: ĐKXĐ: cos^2x-sin^2x<>0

=>cos2x<>0

=>2x<>pi/2+kpi

=>x<>pi/4+kpi/2

 

Bình luận (0)
HD
Xem chi tiết
H24
16 tháng 10 2023 lúc 19:54

\(TXD\) \(D=R\backslash\left\{0\right\}\) là tập đối xứng.

\(\forall x\in D\Rightarrow-x\in D\)

Có \(f\left(-x\right)=\dfrac{\left(-x\right)^2+1}{\left|2\left(-x\right)+1\right|+\left|2\left(-x\right)-1\right|}\)

\(=\dfrac{x^2+1}{\left|1-2x\right|+\left|-2x-1\right|}\)

\(=\dfrac{x^2+1}{\left|-\left(2x-1\right)\right|+\left|-\left(2x+1\right)\right|}\)

\(=\dfrac{x^2+1}{\left|2x-1\right|+\left|2x+1\right|}\) \(=f\left(x\right)\)

Vậy hàm số \(y=f\left(x\right)=\dfrac{x^2+1}{\left|2x+1\right|+\left|2x-1\right|}\) là hàm số chẵn.

Bình luận (3)
NT
16 tháng 10 2023 lúc 19:50

TXĐ: D=R

Khi \(x\in D\) thì \(-x\in D\)

\(f\left(-x\right)=\dfrac{\left(-x\right)^2+1}{\left|-2x+1\right|+\left|-2x-1\right|}\)

\(=\dfrac{x^2+1}{\left|2x+1\right|+\left|2x-1\right|}=f\left(x\right)\)

=>f(x) chẵn

Bình luận (1)