Những câu hỏi liên quan
LL
Xem chi tiết
HN
14 tháng 6 2017 lúc 16:22

\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)

Mà ta có:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)

\(\Leftrightarrow2x^2-7x+5\le0\)

\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)

Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)

Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NL
15 tháng 2 2022 lúc 9:36

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

Bình luận (0)
NN
Xem chi tiết
LH
25 tháng 5 2021 lúc 16:04

ÁP dụng BĐT bunhia có:

 \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\left(7-x\right)^2\le3\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow-\dfrac{\left(7-x\right)^2}{3}\ge-\left(a^2+b^2+c^2\right)\)

Pt (2)\(\Leftrightarrow\)\(x^2=13-\left(a^2+b^2+c^2\right)\le13-\dfrac{\left(7-x\right)^2}{3}\)

\(\Leftrightarrow3x^2\le39-\left(7-x\right)^2\)

\(\Leftrightarrow4x^2-14x+10\le0\) \(\Leftrightarrow1\le x\le\dfrac{5}{2}\)

=>xmin=1 \(\Leftrightarrow\)a=b=c=2

xmax=\(\dfrac{5}{2}\)\(\Leftrightarrow\) a=b=c=\(\dfrac{3}{2}\)

 

Bình luận (1)
H24
25 tháng 5 2021 lúc 15:59

undefined

Bình luận (0)
PA
Xem chi tiết
ND
Xem chi tiết
VH
23 tháng 5 2022 lúc 22:45

a2+b2+c2=4−abc≤4

Smax=4 khi 1 trong 3 số bằng 0

4=abc+a2+b2+c2≥abc+33√(abc)2

Đặt 3√abc=x>0⇒x3+3x2−4≤0

⇔(x−1)(x+2)2≤0⇒x≤1

⇒abc≤1⇒S=4−abc≥3

Dấu "=" xảy ra khi a=b=c=1

Bình luận (3)
VT
Xem chi tiết
H24
Xem chi tiết
DT
2 tháng 2 2022 lúc 17:36

Chuyên gia sao lại đi hỏi ( nghĩ chuyên gia phải cái gì cũng biết mà ??? )

Bình luận (1)
TH
2 tháng 2 2022 lúc 17:48

Ta có: \(\left(a+b+c\right)^2\ge0\)

     <=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

     <=>\(1+2\left(ab+bc+ca\right)\ge0\)

     <=>\(ab+bc+ca\ge\dfrac{-1}{2}\)

     hay P\(\ge\dfrac{-1}{2}\)

Bình luận (0)
DH
Xem chi tiết