Những câu hỏi liên quan
TD
Xem chi tiết
NT
8 tháng 4 2021 lúc 16:32

a, Với \(x\ge0,x\ne4\)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)

b, Ta có  \(x=6+4\sqrt{2}=2^2+4\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|=2+\sqrt{2}\)do \(2+\sqrt{2}>0\)

\(\Rightarrow A=\frac{2+\sqrt{2}-4}{2+\sqrt{2}-2}=\frac{-2+\sqrt{2}}{\sqrt{2}}=\frac{-2\sqrt{2}+2}{2}=\frac{-2\left(\sqrt{2}-1\right)}{2}=1-\sqrt{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
30 tháng 6 2021 lúc 21:30

1, A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

2 , A = \(1-\sqrt{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
VL
16 tháng 10 2021 lúc 19:45

Không có mô tả.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
12 tháng 5 2021 lúc 14:10

ĐKXĐ: ...

\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)

\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (1)
BD
12 tháng 5 2021 lúc 14:19

ĐKXĐ: x \(\ge\)\(\dfrac{1}{3}\)

pt\(\Leftrightarrow\)x(\(\sqrt{x+1}-\sqrt{3x-1}\))+\(\sqrt{3x-1}\left(\sqrt{3x-1}-\sqrt{x+1}\right)\)=0

  \(\Leftrightarrow\)(\(\sqrt{x+1}-\sqrt{3x-1}\))(1-\(\sqrt{3x-1}\))=0

  \(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{3x-1}\\1=\sqrt{3x-1}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)(t/m x \(\ge\)\(\dfrac{1}{3}\))

Vậy.....................

Bình luận (0)
TK
12 tháng 5 2021 lúc 14:34

 

\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)(Đk x≥\(\dfrac{1}{3}\))

ta có:\(x\left(3-\sqrt{3x-1}\right)\)

=\(3x-x\sqrt{3x-1}\)

=\(3x-1-x\sqrt{3x-1}+1\)

=\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)

Ta có \(\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)

=\(\sqrt{x^2+2x+1-2+2x^2}-x\sqrt{x+1}+1\)

=\(\sqrt{\left(x+1\right)\left(3x-1\right)}-x\sqrt{x+1}+1\)

=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)

ta có \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)

\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)

\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)=\sqrt{x+1}\left(\sqrt{3x-1}-x\right)\)

⇔​​\(\sqrt{3x-1}=\sqrt{x+1}\)

⇔​\(3x-1=x+1\)

\(2x=2\)

⇔x=1(N)

​Vậy x=1

 

 

 

Bình luận (1)
MS
Xem chi tiết
GL
28 tháng 10 2023 lúc 22:50

loading...  Chúc Bạn Học Tốt.

Bình luận (0)
TD
Xem chi tiết
NT
8 tháng 4 2021 lúc 13:44

b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)

\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )

mà \(a^2+b^2+c^2\ge ab+bc+ac\)

\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm ) 

Bình luận (0)
 Khách vãng lai đã xóa
NT
9 tháng 5 2021 lúc 12:52

1.

Điều kiện x \ge \dfrac14.

Phương trình tương đương với \left(\sqrt2.\sqrt{2x^2+x+1}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2 = 0 \Leftrightarrow \dfrac{4x^2+2x-2}{\sqrt2.\sqrt{2x^2+x+1}+2} - \dfrac{4x-2}{\sqrt{4x-1}+1} + (x+2)(2x-1) = 0\\ \Leftrightarrow (2x-1)\left(\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2\right) = 0

\Leftrightarrow \left[\begin{aligned} & x =\dfrac12\\ & \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 = 0\\ \end{aligned}\right.

Với x \ge \dfrac14 ta có:

\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} > 0

- \dfrac2{\sqrt{4x-1}+1} \ge -2

x + 2 > 2.

Suy ra \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 > 0

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 5 2021 lúc 17:46

1.

√2 × √(2x2+x+1)        +      √(4x-1) + 3x-3=0

⇌[√(4x2+2x+2)-2] - [√(4x-1)     -1] + (2x2+3x-2)=0

⇌(4x2+2x-2)/[√(4x2+2x+2)+2] - (4x-2)/[√(4x-1)+1] + (2x-1)(x+2) =0

⇔(2x-1) × [(2x+2)/√(4x2+2x+2+2) - 2/(√4x-1)+1+x+2]=0

Với x≥1/4 thì (2x+2)/(√4x2+2x+2+2)≥0 hoặc x+2>2 hoặc (√4x-1)+1≥1 ⇌ 2/[(√4x-1)+1]≤2

⇒(2x+2)/[(√4x2+2x+2)+2] - 2/[(x-1)+1]+x+2>0-2+2=0

⇌ 2x-1=0⇒x=1/2 

Vậy x=1/2

2.

Áp dụng bất đẳng thức ta có :

Vế trái = a4/(ab +2ac)    +   b4/(bc+2ab)  + c4/(ac+2bc)≥[(a2 + b2 +c2)2]/[3(ab+bc+ca) =[(a2+b2+c2)2]/9

Ấp dụng bất đẳng thức ta có :

ab+bc+ca≤a2+b2+c

Vế trái ≥ [(a2+b2+c2)]/9≥32/9 =1

⇒ Vế trái ≥1 (đpcm)

Dấu = xảy ra khi a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
PL
Xem chi tiết
TL
9 tháng 3 2016 lúc 22:08

Cậu sống ở đâu hở ? Lấy đâu ra toán khó thế ?

Bình luận (0)
PL
8 tháng 3 2016 lúc 21:50

Câu 3 sửa \(\int\limits_1^{3/2} \)

Bình luận (0)
TL
9 tháng 3 2016 lúc 20:15

Khó như thế này thì ai mà làm nổi

Bình luận (0)
DN
Xem chi tiết
NT
9 tháng 7 2022 lúc 15:00

a: \(\left(2\sqrt{10}+3\sqrt{3}\right)^2=67+12\sqrt{30}\)

\(\left(3\sqrt{5}+2\sqrt{7}\right)^2=77+12\sqrt{35}\)

mà \(12\sqrt{30}< 12\sqrt{35};67< 77\)

nên \(2\sqrt{10}+3\sqrt{3}< 3\sqrt{5}+2\sqrt{7}\)

b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)

\(2^2=4\)

mà 5>4

nên \(\sqrt{2}+\sqrt{3}>2\)

Bình luận (0)
PK
Xem chi tiết
TC
2 tháng 9 2018 lúc 17:31

\(\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6+\sqrt{2}}\right)}=2\)

=2.

Bình luận (0)
H24
Xem chi tiết
NL
8 tháng 5 2021 lúc 23:06

1 bài Mincopxki khá quen:

\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)

Đến đây thì nó là bài Cô-si có biên, cứ tách ghép theo điểm rơi là được:

\(P\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)

\(P\ge\sqrt{2\sqrt{\dfrac{81\left(a+b+c\right)^2}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16.\left(\dfrac{3}{2}\right)^2}}=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xayr a khi \(a=b=c=\dfrac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
TH
1 tháng 6 2021 lúc 7:12

Áp dụng bđt AM - GM ta có \(\sqrt{\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}+1\right)=\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{2a\left(b+c\right)}\)

\(\Rightarrow\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}\ge\dfrac{2\sqrt{2}a\left(b+c\right)}{\left(a+b+c\right)^2}\).

Tương tự,...

Cộng vế với vế ta có \(\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}}\ge\dfrac{4\sqrt{2}\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\). (*)

Mặt khác do a, b, c là độ dài ba cạnh của 1 tam giác nên \(a\left(b+c-a\right)+b\left(c+a-b\right)+c\left(a+b-c\right)>0\Rightarrow2\left(ab+bc+ca\right)\ge a^2+b^2+c^2\Rightarrow4\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\). (**)

Từ (*) và (**) ta có đpcm.

 

Bình luận (0)