Những câu hỏi liên quan
HK
Xem chi tiết
NT
13 tháng 7 2023 lúc 18:25

a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)

\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)

b) \(2^{n+1}+4.2^n=3.2^7\)

\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)

c) \(3^{n+2}-3^{n+1}=486\)

\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)

\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)

d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)

Bình luận (0)
HL
Xem chi tiết
CN
Xem chi tiết
H9
8 tháng 7 2023 lúc 16:23

a) \(2^n=8\)

\(\Rightarrow2^n=2^3\)

\(\Rightarrow n=3\)

b) \(5^{n+1}=125\)

\(\Rightarrow5^{n+1}=5^3\)

\(\Rightarrow n+1=3\)

\(\Rightarrow n=3-1=2\)

c) Mình không rõ đề:

d) \(2\cdot7^{n-1}+3=101\)

\(\Rightarrow2\cdot7^{n-1}=101-3\)

\(\Rightarrow2\cdot7^{n-1}=98\)

\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)

\(\Rightarrow7^{n-1}=49\)

\(\Rightarrow7^{n-1}=7^2\)

\(\Rightarrow n-1=2\)

\(\Rightarrow n=1+2=3\)

e) \(3\cdot5^{2n+1}-6^2=339\)

\(\Rightarrow3\cdot5^{2n+1}=339+36\)

\(\Rightarrow3\cdot5^{2n+1}=375\)

\(\Rightarrow5^{2n+1}=125\)

\(\Rightarrow5^{2n+1}=5^3\)

\(\Rightarrow2n+1=3\)

\(\Rightarrow2n=2\)

\(\Rightarrow n=\dfrac{2}{2}=1\)

Bình luận (0)
MD
Xem chi tiết
MH
14 tháng 9 2021 lúc 20:21

c)\(7^{2n}+7^{2n+2}=2450\)

\(7^{2n}+7^{2n}.7^2=2450\)

\(7^{2n}.50=2450\)

\(7^{2n}=49\)\(=7^2\)

⇒2n=2

⇒n=1

Bình luận (0)
MH
14 tháng 9 2021 lúc 20:18

a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\)                   b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)

\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\)                    \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)

⇒n=3                                          ⇒m=2

Bình luận (0)
KQ
Xem chi tiết
AH
8 tháng 3 2021 lúc 3:14

Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.

Bình luận (0)
HC
Xem chi tiết
NL
10 tháng 1 2021 lúc 22:37

\(\lim\dfrac{\left(2n-1\right)\left(3n^2+2\right)^3}{-2n^5+4n^3-1}=\lim\dfrac{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{3n^2+2}{n^2}\right)^3}{\dfrac{-2n^5+4n^3-1}{n^7}}\)

\(=\lim\dfrac{\left(2-\dfrac{1}{n}\right)\left(3+\dfrac{2}{n^2}\right)^3}{-\dfrac{2}{n^2}+\dfrac{4}{n^4}-\dfrac{1}{n^7}}=-\infty\)

\(\lim3^n\left(6.\left(\dfrac{2}{3}\right)^n-5+\dfrac{7n}{3^n}\right)=+\infty.\left(-5\right)=-\infty\)

Bình luận (0)
DH
Xem chi tiết
HH
16 tháng 2 2021 lúc 21:48

a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả

b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)

c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)

d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)

e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)

f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)

g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)

\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)

\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)

Bình luận (4)
DH
17 tháng 2 2021 lúc 8:05

a) lim \(\left(-3n^3+n^2-1\right)\)

Bình luận (0)
NA
25 tháng 3 2021 lúc 17:39

minh le oi ban dao mau so cua ban len cho tu uong roi thay vi tri cua mau thanh n3 +2n

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NP
Xem chi tiết