Những câu hỏi liên quan
NA
Xem chi tiết
NT
13 tháng 11 2021 lúc 21:29

2: \(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)

Bình luận (0)
GN
Xem chi tiết
NT
16 tháng 3 2021 lúc 22:55

1: Phân tích thành nhân tử

c) Ta có: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Bình luận (0)
LB
Xem chi tiết
NT
6 tháng 6 2017 lúc 9:00

1)  \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)

2)  \(x^3-9x^2+6x+16\)

\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)

\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)

3)   \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-1\right)\)

4)  \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)

\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

gửi phần này trước còn lại làm sau !!! tk mk nka !!!

Bình luận (0)
NP
5 tháng 6 2017 lúc 21:54

nhiều thế

Bình luận (0)
NT
6 tháng 6 2017 lúc 9:39

6) \(\left(x+y\right)^2-\left(x+y\right)-12\)\(=\left(x+y\right)^2-2\cdot\frac{1}{2}\left(x+y\right)+\frac{1}{4}-\frac{49}{4}\)

\(=\left(x+y-\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)\(=\left(x+y-\frac{1}{2}-\frac{7}{2}\right)\left(x+y-\frac{1}{2}+\frac{7}{2}\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

7)   \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)          (NHÂN x + 2 vs x +  5  và  x + 3 vs x + 4 )

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

ĐẶT   \(x^2+7x+11=y\)   ta được :  

\(\left(y+1\right)\left(y-1\right)-24=y^2-1-24\)

\(=y^2-25=\left(y-5\right)\left(y+5\right)\)

8)  \(4x^4-32x^2+1=4x^4+4x^2+1-36x^2\)

\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)

9) sai đề rùi bạn ơi ! đề đúng nè 

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

Ta thấy :  

\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Thay vào biểu thức bài cho ta được : 

\(3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)

\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)

bài ở trên câu 3 : kết luận là  \(\left(x-3\right)\left(x^2-x-6\right)\)bạn sửa lại giúp mk nka !!! Th@nk !!! Tk Mk vs  

Bình luận (0)
NK
Xem chi tiết
NT
3 tháng 8 2023 lúc 17:40

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

Bình luận (0)
NH
3 tháng 8 2023 lúc 17:46

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1

 

 

 

 

 

Bình luận (0)
MD
3 tháng 8 2023 lúc 17:47

1

Bình luận (0)
NK
Xem chi tiết
KL
3 tháng 8 2023 lúc 17:17

(x - 5)² = (3 + 2x)²

(x - 5)² - (3 + 2x)² = 0

[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0

(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0

(-x - 8)(3x - 2) = 0

-x - 8 = 0 hoặc 3x - 2 = 0

*) -x - 8 = 0

-x = 8

x = -8

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = -8; x = 2/3

--------------------

27x³ - 54x² + 36x = 9

27x³ - 54x² + 36x - 9 = 0

27x³ - 27x² - 27x² + 27x + 9x - 9 = 0

(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0

27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0

(x - 1)(27x² - 27x + 9) = 0

x - 1 = 0 hoặc 27x² - 27x + 9 = 0

*) x - 1 = 0

x = 1

*) 27x² - 27x + 9 = 0

Ta có:

27x² - 27x + 9

= 27(x² - x + 1/3)

= 27(x² - 2.x.1/2 + 1/4 + 1/12)

= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R

⇒ 27x² - 27x + 9 = 0 (vô lí)

Vậy x = 1

Bình luận (0)
KL
3 tháng 8 2023 lúc 17:48

A = x² + y²

= x² - 2xy + y² + 2xy

= (x - y)² + 2xy

= 4² + 2.1

= 16 + 2

= 18

B = x³ - y³

= (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + xy + 2xy)

= (x - y)[(x - y)² + 3xy]

= 4.(4² + 3.1)

= 4.(16 + 3)

= 4.19

= 76

C = x⁴ + y⁴

= (x²)² + (y²)²

= (x²)² + 2x²y² + (y²)² - 2x²y²

= (x² + y²)² - 2x²y²

= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²

= [(x - y)² + 2x²y²]² - 2x²y²

= (4² + 2.1²)² - 2.1²

= (16 + 2)² - 2

= 18² - 2

= 324 - 2

= 322

Bình luận (0)
NT
3 tháng 8 2023 lúc 17:14

a: =>(2x+3)^2-(x-5)^2=0

=>(2x+3+x-5)(2x+3-x+5)=0

=>(x+8)(3x-2)=0

=>x=2/3 hoặc x=-8

b: =>27x^3-54x^2-36x-9=0

=>3x^3-6x^2-4x-1=0

=>\(x\simeq2,57\)

c: A=x^2+y^2=(x-y)^2+2xy=4^2+2=18

B=x^3-y^3=(x-y)^3+3xy(x-y)

=4^3+3*1*4

=64+12=76

C=(x^2+y^2)^2-2x^2y^2

=18^2-2*1^2=322

Bình luận (0)
AD
Xem chi tiết
NM
16 tháng 11 2021 lúc 8:36

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Bình luận (0)
IV
16 tháng 11 2021 lúc 8:40

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

Bình luận (0)
IV
16 tháng 11 2021 lúc 8:52

Bài 2

a) \(7x^2+14xy=7x\left(x+2y\right)\)

b) \(3x+12-\left(x^2+4x\right)=-x^2-x+12=\left(-x+3\right)\left(x+4\right)\)

c) \(x^2-2xy+y^2=\left(x-y\right)^2\)

d) \(x^2-2x-15=x^2+3x-5x-15=\left(x+3\right)\left(x-5\right)\)

Bình luận (0)
HM
Xem chi tiết
DH
6 tháng 6 2017 lúc 7:08

a,\(x^3-7x+6\)

\(=x^3-2x^2+2x^2-4x-3x+6\)

\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\)

\(=x^2.\left(x-2\right)+2x.\left(x-2\right)-3.\left(x-2\right)\)

\(=\left(x-2\right).\left(x^2+2x-3\right)\)

\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)

\(=\left(x-2\right).\left[\left(x^2-x\right)+\left(3x-3\right)\right]\)

\(=\left(x-2\right).\left[x.\left(x-1\right)+3.\left(x-1\right)\right]\)

\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)

b,\(x^3-9x^2+6x+16\)

\(=x^3-8x^2-x^2+8x-2x+16\)

\(=\left(x^3-8x^2\right)-\left(x^2-8x\right)-\left(2x-16\right)\)

\(=x^2.\left(x-8\right)-x.\left(x-8\right)-2.\left(x-8\right)\)

\(=\left(x-8\right).\left(x^2-x-2\right)\)

\(=\left(x-8\right).\left(x^2+x-2x-2\right)\)

\(=\left(x-8\right).\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)

\(=\left(x-8\right).\left[x.\left(x+1\right)-2.\left(x+1\right)\right]\)

\(=\left(x-8\right).\left(x+1\right).\left(x-2\right)\)

c,\(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)

\(=x^2.\left(x-5\right)-x.\left(x-5\right)-6.\left(x-5\right)\)

\(=\left(x-5\right).\left(x^2-x-6\right)\)

\(=\left(x-5\right).\left(x^2+2x-3x-6\right)\)

\(=\left(x-5\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)

\(=\left(x-5\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)

\(=\left(x-5\right).\left(x+2\right).\left(x-3\right)\)

Chúc bạn học tốt!!!

Bình luận (3)
DH
6 tháng 6 2017 lúc 7:26

d,\(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)

\(=\left(2x+1\right).\left(x^2-x+3\right)\)

e, \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(27x^2-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)

\(=9x^2.\left(3x-1\right)-6x.\left(3x-1\right)+4.\left(3x-1\right)\)

\(=\left(3x-1\right).\left(9x^2-6x+4\right)\)

Chúc bạn học tốt!!!

Bình luận (1)
DH
6 tháng 6 2017 lúc 7:44

7, \(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)

\(=\left[\left(x+2\right).\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)

\(=\left(x^2+5x+2x+10\right).\left(x^2+4x+3x+12\right)-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)(1)

Đặt \(t=x^2+7x+10\Rightarrow t+2=x^2+7x+12\)

\(\Rightarrow\left(1\right)=t.\left(t+2\right)-24\)

\(=t^2+2t-24=t^2-4t+6t-24\)

\(=\left(t^2-4t\right)+\left(6t-24\right)=t.\left(t-4\right)+6.\left(t-4\right)\)

\(=\left(t-4\right).\left(t+6\right)\) (2)

\(t=x^2+7x+10\) nên:

(2) \(=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right).\left(x^2+7x+16\right)\)

\(=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)

\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)

\(=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)

Chúc bạn học tốt!!!

Bình luận (0)
NK
Xem chi tiết
ML
3 tháng 8 2023 lúc 17:47

\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)

Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)

\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)

\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)

Bình luận (0)
DH
Xem chi tiết
NT
20 tháng 7 2021 lúc 9:32

undefined

Bình luận (0)