2\(\sqrt{ }\)29 và 10
So sánh: a) \(\sqrt{26}-\sqrt{8}\) và 2
b) \(\sqrt{29}-\sqrt{41}\)và \(5-\sqrt{10}\)
a) 2 = √4 => √26 - √8 > 2
b) Dễ thấy √29 chắc chắn nhỏ hơn √41 => √29-√41 chắc chắn âm, còn 5=√25 => kết quả sẽ ra dương(√25>√10)
Suy ra √29 - √41 < 5- √10
Đây chỉ là cách tính nhanh của mình ,bn có thể dùng máy tính để tính lại.
\(\sqrt{26}-\sqrt{8}< \sqrt{25}-\sqrt{9}=5-3=2\)
b) \(\sqrt{29}< \sqrt{41}\Rightarrow\sqrt{29}-\sqrt{41}< 0\)
và \(5-\sqrt{10}=\sqrt{25}-\sqrt{10}>0\)
Vậy \(\sqrt{29}-\sqrt{41}< 5-\sqrt{10}\)
Tính giá trị biểu thức
A = \(\sqrt[3]{6\sqrt{3}+10}\)TRỪ \(\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{45+29\sqrt{2}}\) + \(\sqrt[3]{45-29\sqrt{2}}\)
C=\(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}\)+ \(\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
A = \(\sqrt[3]{10+6\sqrt{3}}+\sqrt[3]{10-6\sqrt{3}}\)
<=> A3 = 20 - 3×2A
<=> A3 + 6A - 20 = 0
<=> A = 2
4.tính giá trị biểu thức:
\(A=\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
\(B=\sqrt[3]{45+29\sqrt{2}}-\sqrt[3]{45-29\sqrt{2}}\)
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
\(\sqrt{\left(x-1\right)^2+4}+\sqrt{\left(x+1\right)^2+9}=\sqrt{29}\)
\(the,a=\left(x-1\right)^2+4\)
\(\sqrt{a}+\sqrt{a+5}=\sqrt{29}\)
\(a+a+5+2\sqrt{a^2+5a}=29\)
\(2a+2\sqrt{a^2+5a}=24\)
\(a+\sqrt{a^2+5a}=12\)
\(\sqrt{a^2+5a}=12-a\)
\(a^2+5a=144-24a+a^2\)
\(29a=144\)
\(a=\frac{144}{29}\)
So sánh: a) \(2^{30}+3^{30}+4^{30}\) và \(3.24^{10}\)
b) \(4+\sqrt{33}\) và \(\sqrt{29}+\sqrt{14}\)
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
Tính giá trị của biểu thức
a. \(A=\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
b. \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c. \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
cảm ơn các bạn trước nhaa
ta có: A3=\(6\sqrt{3}+10-6\sqrt{3}+10-3\sqrt[3]{\left(6\sqrt{3}+10\right)\left(6\sqrt{3}-10\right)}.\left(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\right)\)
=\(20-3.\sqrt[3]{8}.A\)=\(20-6A\)
do đó A3=20-6A↔A3+6A-20=0↔(A2+2A+10)(A-2)=0
dễ thấy A2+2A+10>0→A=2
b) giống a)
c)giống b)
giải phương trình :
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
Ta có \(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
<=> \(\sqrt{x^2-2x+5}=\sqrt{29}-\sqrt{x^2+2x+10}\)
<=> \(x^2-2x+5=x^2+2x+39-2\sqrt{29\left(x^2+2x+10\right)}\)
<=> \(2\sqrt{29x^2+58x+290}=4x+34\)
<=> \(\sqrt{29x^2+58x+290}=2x+17\)
<=> \(29x^2+58x+290=4x^2+68x+289\)
<=> \(25x^2-10x+1=0\)
<=> \(\left(5x-1\right)^2=0\)
<=> \(x=\frac{1}{5}\)
Tính
\(D=\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}.\)
\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Biểu thức A chị tính A2 rồi sẽ tính đc A
Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ
Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc
đề câu B chả sai đi chỗ nào :)) tại tụi m tách sai thôi =))
\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)
\(B=\sqrt{\left(3\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}\) ( tách ra hằng đẳng thức )
\(B=3\sqrt{3}+\sqrt{2}-3\sqrt{3}+\sqrt{5}\)
\(B=\sqrt{2}+\sqrt{5}\)
nuột không :))
giải phương trình
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
Lời giải:
ĐK: \(x\in\mathbb{R}\)
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
\(\Leftrightarrow \sqrt{x^2+2x+10}=\sqrt{29}-\sqrt{x^2-2x+5}\)
Bình phương 2 vế:
\(x^2+2x+10=29+x^2-2x+5-2\sqrt{29(x^2-2x+5)}\)
\(\Leftrightarrow 4x-24=-2\sqrt{29(x^2-2x+5)}\)
\(\Leftrightarrow 12-2x=\sqrt{29(x^2-2x+5)}\)
\(\Rightarrow \left\{\begin{matrix} 12-2x\geq 0\\ (12-2x)^2=29(x^2-2x+5)\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 6\\ 4x^2+144-48x=29x^2-58x+145\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 6\\ 25x^2-10x+1=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 6\\ (5x-1)^2=0\end{matrix}\right.\Rightarrow x=\frac{1}{5}\)
(thỏa mãn)
Vậy.....