2\(\sqrt{29}\) và 10
2\(\sqrt{29}\) = \(\sqrt{29.4}\) = \(\sqrt{116}\)
10 = \(\sqrt{100}\)
Vì \(\sqrt{116}\) > \(\sqrt{100}\)
Vậy: 2\(\sqrt{29}\) > 10
2\(\sqrt{29}\) và 10
2\(\sqrt{29}\) = \(\sqrt{29.4}\) = \(\sqrt{116}\)
10 = \(\sqrt{100}\)
Vì \(\sqrt{116}\) > \(\sqrt{100}\)
Vậy: 2\(\sqrt{29}\) > 10
So sánh: a) \(\sqrt{26}-\sqrt{8}\) và 2
b) \(\sqrt{29}-\sqrt{41}\)và \(5-\sqrt{10}\)
Tính giá trị biểu thức
A = \(\sqrt[3]{6\sqrt{3}+10}\)TRỪ \(\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{45+29\sqrt{2}}\) + \(\sqrt[3]{45-29\sqrt{2}}\)
C=\(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}\)+ \(\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)
4.tính giá trị biểu thức:
\(A=\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
\(B=\sqrt[3]{45+29\sqrt{2}}-\sqrt[3]{45-29\sqrt{2}}\)
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
giải phương trình :
\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)
Tính
\(D=\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}.\)
\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Giải phương trình :
\(2\sqrt{2x-2}+5\sqrt{6x-29}+\sqrt{10-x}+\left(9-x\right)\sqrt{x-8}=x^2-15x+88\)
A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}}\) ;B=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
Cho P=\(\dfrac{A}{B}\) tìm x thỏa mãn: P.x≤\(10\sqrt{x}-29-\sqrt{x-25}\)
Các bạn cho mình cả cách giải nha!
Thanks các bạn nhìu!!!!!
Bài 1: Giải phương trình sau
a, \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)
b, \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
Bài 2: Tính giá trị của các biểu thức sau
A=\(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
B= \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
C= \(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
D= \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)