Giải phương trình\(\left(x^2+8x\right)^2+8\left(x^2+8x\right)=48\)
Giải phương trình sau:
\(2x\left(8x+1\right)\left(8x^2-x+2\right)-126=0\)
Sửa đề: 8x-1
=>2(8x^2-x)(8x^2-x+2)-126=0
=>2[(8x^2-x)^2+2(8x^2-x)]-126=0
=>(8x^2-x)^2+2(8x^2-x)-63=0
=>(8x^2-x+9)(8x^2-x-7)=0
=>8x^2-x-7=0
=>x=1 hoặc x=-7/8
Giải phương trình: \(x^2+8x+9=\) \(\left(x+8\right)\)\(\sqrt{x^2+9}\)
Đặt \(\sqrt{x^2+9}=t>0\) ta được:
\(t^2+8x=\left(x+8\right)t\Leftrightarrow t^2-\left(x+8\right)t+8x=0\)
\(\Leftrightarrow t^2-tx-8t+8x=0\)
\(\Leftrightarrow t\left(t-x\right)-8\left(t-x\right)=0\)
\(\Leftrightarrow\left(t-x\right)\left(t-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+9}=x\left(x\ge0\right)\\\sqrt{x^2+9}=8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+9=x^2\left(vn\right)\\x^2=55\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{55}\)
Giải phương trình \(\left(x^2+8x+8\right)^2=\left(4x+6\right)\left(2x^2+12x+10\right)\)
\(\left(x^2+8x+8\right)^2=\left(4x+6\right)\left(2x^2+12x+10\right)\)
\(\left(x^2+8x+8\right)^2-\left[\left(4x+6\right)\left(2x^2+12x+10\right)\right]=0\)
\(\left(x^2+4x+2\right)^2=0\)
\(x^2+4x=-2\)
\(x\left(x+4\right)=-2\)
\(x=\pm\sqrt{2}-2\)
Giải phương trình
a) \(\dfrac{3}{5x-1}\)+ \(\dfrac{2}{3-5x}\)=\(\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
b) \(\dfrac{5-x}{4x^2-8x}\)+\(\dfrac{7}{8x}\)=\(\dfrac{x-1}{2x\left(x-2\right)}\)+\(\dfrac{1}{8x-16}\)
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}
1/ Chứng minh phương trình vô nghiệm:
a) \(-16x^2-8x+4=0\)
b) \(-x^2+4x-4=0\)
2/ Giải phương trình sau:
\(\left(x^2-2x-4\right)\left(2x^2-8x-1\right)=0\)
Bài 1:
b: \(\Leftrightarrow x-2=0\)
hay x=2
Giải Phương Trình \(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(\frac{2x}{x-2}-\frac{x}{x-4}=\frac{8x+8}{\left(x-2\right)\left(x-4\right)}\)
giải phương trình quy về bậc hai
\(\Rightarrow2x\left(x-4\right)-x\left(x-2\right)=8x+8\)
\(\Leftrightarrow2x^2-8x-x^2+2x=8x+8\)
\(\Leftrightarrow x^2-14x-8=0\)
\(\Delta'=\left(-7\right)^2-1.\left(-8\right)=57\)
\(\sqrt{\Delta}=\sqrt{57}\)\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt
\(x_1=\frac{7+\sqrt{57}}{1}=7+\sqrt{57}\) \(x_2=\frac{7-\sqrt{57}}{1}=7-\sqrt{57}\)
giải phương trình :
\(\left(\frac{x^2}{2}+5x+4\right)^2=\left(2x+1\right)\left(x^2+8x+7\right)\)
\(4\left(\frac{x^2}{2}+5x+4\right)^2\)=\(4\left(2x+1\right)\left(x^2+8x+7\right)\)
\(\Leftrightarrow\left(x^2+10x+8\right)^2=4\left(2x+1\right)\left(x^2+8x+7\right)\)
dat \(2x+1=a,x^2+8x+7=b\) \(\Rightarrow a+b=x^2+10x+8\)
pt tro thanh
\(\left(a+b\right)^2=4ab\Rightarrow a^2+2ab+b^2-4ab=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\Leftrightarrow2x+1=x^2+8x+1\)
\(\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
Giải phương trình:
a,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
b,\(\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
c,\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+3}\)