Những câu hỏi liên quan
NP
Xem chi tiết
DT
19 tháng 8 2023 lúc 15:15

\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\\ =\dfrac{1}{2023}\)

Bình luận (0)
VM
19 tháng 8 2023 lúc 15:18

đáp án B bạn nha 

Bình luận (0)
TM
Xem chi tiết
H9
12 tháng 8 2023 lúc 9:14

\(1\dfrac{1}{2}\times1\dfrac{1}{3}\times1\dfrac{1}{4}\times...\times1\dfrac{1}{2023}\times1\dfrac{1}{2024}\)

\(=\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{4}\right)\times...\times\left(1+\dfrac{1}{2023}\right)\times\left(1+\dfrac{1}{2024}\right)\)

\(=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times...\times\dfrac{2024}{2023}\times\dfrac{2025}{2024}\)

\(=\dfrac{3\times4\times5\times...\times2024\times2025}{2\times3\times4\times...\times2023\times2024}\)

\(=\dfrac{2025}{2}\)

\(=1012,5\)

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 8 2023 lúc 21:06

giúp mình trả lời luôn ạ 

Bình luận (0)
DP
Xem chi tiết
H24
23 tháng 9 2023 lúc 20:03

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh

Bình luận (0)
PC
23 tháng 9 2023 lúc 20:25

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)

\(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)

\(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)

\(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)

⇒ \(x+1=2023\)

\(x=2023-1=2022\)

Bình luận (0)
PD
Xem chi tiết
NT
5 tháng 4 2023 lúc 21:29

x=7 nha

Bình luận (0)
CL
Xem chi tiết
NT
Xem chi tiết
NT
9 tháng 8 2023 lúc 0:38

\(2x:\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)=2023\left(1\right)\)

Đặt \(A=\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)\)

\(\Rightarrow A=\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}\right)\)

\(\Rightarrow\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)\)

\(\Rightarrow\dfrac{1}{2}A=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)\)

\(\Rightarrow\dfrac{1}{2}A=1-\dfrac{1}{x+1}\)

\(\Rightarrow A=2\left(1-\dfrac{1}{x+1}\right)\Rightarrow A=\dfrac{2x}{x+1}\)

\(\left(1\right)\Rightarrow2x:\dfrac{2x}{x+1}=2023\)

\(\Rightarrow2x.\dfrac{x+1}{2x}=2023\left(x\ne0\right)\)

\(\Rightarrow x+1=2023\)

\(\Rightarrow x=2022\)

Bình luận (0)
DH
Xem chi tiết
XO
17 tháng 4 2022 lúc 15:53

Ta có \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\)

\(\Leftrightarrow\dfrac{\left(yz\right)^2+\left(xz\right)^2+\left(xy\right)^2+2xyz}{\left(xyz\right)^2}=1\)

<=> (xy)2 + (yz)2 + (zx)2 + 2xyz = (xyz)2 

<=> (xy)2 + (yz)2 + (xz)2 + 2xyz(x + y + z) = (xyz)2 

<=> (xy + yz + zx)2 = (xyz)2 

<=> \(\left[{}\begin{matrix}xy+yz+zx=xyz\\xy+yz+zx=-xyz\end{matrix}\right.\)

+) Khi xy + yz + zx = -xyz 

=> \(\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=-1< 0\left(\text{loại}\right)\)

=> xy + yz + zx = xyz 

<=> \(xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=xyz\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1\right)=0\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

<=> \(\dfrac{x+y}{xy}=\dfrac{-\left(x+y\right)}{\left(x+y+z\right)z}\)

<=> \(\left(x+y\right)\left(\dfrac{1}{xz+yz+z^2}+\dfrac{1}{xy}\right)=0\)

<=> \(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(zx+yz+z^2\right)xy}=0\)

<=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

Khi x = -y => y = 1 => P = 1

Tương tự y = -z ; z = -x được P = 1

Vậy P = 1 

Bình luận (1)
3N
Xem chi tiết
NT
24 tháng 10 2023 lúc 20:13

loading...  loading...  loading...  loading...  

Bình luận (0)
H24
24 tháng 10 2023 lúc 20:14

`(2^x+1)^2 =25`

`=> (2^x+1)^2 = (+-5)^2`

\(\Rightarrow\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)

\(\left(x+6\right)\left(5^x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+6=0\\5^x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\5^x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)

\(\left(x-3\right)^{2023}=x-3\)

\(\Rightarrow\left(x-3\right)^{2023}-\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^{2022}-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Bình luận (0)
KR
24 tháng 10 2023 lúc 21:24

`#3107.101107`

1.

`(2^x + 1)^2 = 25`

`=> (2^x + 1)^2 = (+-5)^2`

`=>`\(\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2^x=4\\2^x=-6\left(\text{vô lý}\right)\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)

Vậy, `x =2.`

2.

`(x + 6)(5x - 1) = 0`

`=>`\(\left[{}\begin{matrix}x+6=0\\5x-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=-6\\5x=1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy, `x \in {-6; 1/5}`

3.

`2*3^(x + 3) + 3^(2 + x) = 891`

`=> 2* 3^x * 3^3 + 3^2 * 3^x = 891`

`=> 54*3^x + 9*3^x = 891`

`=> 3^x * (54 + 9) = 891`

`=> 3^x * 63 = 891`

`=> 3^x = 891 \div 63`

`=> 3^x = 891/63`

Bạn xem lại đề.

4.

`(x - 3)^2023 = x - 3`

`=> (x - 3)^2023 - (x - 3) = 0`

`=> (x - 3) * [ (x - 3)^2022 - 1] = 0`

`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{2022}-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\\left(x-3\right)^{2022}=\left(\pm1\right)^{2022}\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\x-3=1\\x-3=-1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)

Vậy, `x \in {2; 3; 4}.`

Bình luận (0)