Những câu hỏi liên quan
NK
Xem chi tiết
DT
1 tháng 2 2023 lúc 20:03

Đặt : \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

`=>x=5k,y=3k`

Ta có : \(x^2-y^2=4=>\left(5k\right)^2-\left(3k\right)^2=4\\ =>25k^2-9k^2=4\\ =>16k^2=4\\ =>k^2=\dfrac{1}{4}\\ =>k=\pm\dfrac{1}{2}\)

\(=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
HT
Xem chi tiết
LL
14 tháng 10 2021 lúc 14:25

ĐKXĐ: \(x\ne y,x\ne-y\)

\(hpt\Leftrightarrow\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)-\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=\dfrac{5}{8}-\dfrac{3}{8}\)

\(\Leftrightarrow0=\dfrac{1}{4}\left(VLý\right)\)

Vậy hpt vô nghiệm

Bình luận (2)
NM
14 tháng 10 2021 lúc 16:43

má bài này lol thắng cx đăng tr :vv

Bình luận (3)
NT
13 tháng 2 2023 lúc 9:19

\(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow\left\{{}\begin{matrix}a+b+c=2\\2ab-c^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-a-b\\2ab-\left(2-a-b\right)^2=4\end{matrix}\right.\Leftrightarrow}}\left\{{}\begin{matrix}c=2-a-b\\2ab-4-a^2-b^2+4a+4a-2ab-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-a-b\\\left(a-2\right)^2+\left(b-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=-2\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\z=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
NA
Xem chi tiết
TM
14 tháng 5 2022 lúc 17:40

\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\left(ĐKXĐ:y\ne0\right)\)

\(\Rightarrow\dfrac{xy-27}{9y}=\dfrac{1}{18}\)

\(\Rightarrow18\left(xy-27\right)=9y\)

\(\Rightarrow2\left(xy-27\right)=y\)

\(\Rightarrow2xy-54=y\)

\(\Rightarrow2xy-y=54\Rightarrow y\left(2x-1\right)=54\)

\(\Rightarrow y=\dfrac{54}{2x-1}\)

- Suy ra 54 chia hết cho 2x - 1

\(\Rightarrow2x-1\inƯ\left(54\right)\)

\(\Rightarrow2x-1\in\left\{1;-1;2;-2;3;-3;9;-9;27;-27\right\}\)

Cho 2x - 1 bằng từng giá trị ở trên, ta tìm được :

 \(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};2;-1;5;-4;14;-13\right\}\). Mà x không có giá trị ngoài tập số nguyên.

\(\Rightarrow x\in\left\{-13;-4;-1;0;1;2;5;14\right\}\)

Thay các giá trị x trên vừa tìm được vào y :

\(\Rightarrow y\in\left\{54;-54;18;-18;6;-6;2;-2\right\}\)

Vậy : Các số x và y thỏa mãn đề bài là : \(\left(x;y\right)\in\left\{\left(1;54\right),\left(0;-54\right),\left(2;18\right),\left(-1;-18\right),\left(5;6\right),\left(-4;-6\right),\left(14;2\right),\left(-13;-2\right)\right\}\)

Bình luận (1)
NT
Xem chi tiết
NL
6 tháng 1 2022 lúc 13:42

\(3x\left(x-y\right)+x-y\)

\(=3x\left(x-y\right)+1\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+1\right)\)

Bình luận (0)
NT
6 tháng 1 2022 lúc 13:43

\(=\left(x-y\right)\left(3x+1\right)\)

Bình luận (0)
MT
Xem chi tiết
NT
3 tháng 9 2021 lúc 13:37

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{18}{9}=2\)

Do đó: x=8; y=10

Bình luận (0)
KC
Xem chi tiết
NT
16 tháng 6 2023 lúc 12:52

=>16x+9y=840 và 210/x-210/y=7/4

=>16x=840-9y và 30/x-30/y=1/4

=>x=-9/16y+52,5 và (30y-30x)=xy/4

=>xy=120y-120x

=>y(-9/16y+52,5)=120y-120(-9/16y+52,5)

=>-9/16y^2+52,5y-120y+120(-9/16y+52,5)=0

=>-9/16y^2-67,5y-67,5y+6300=0

=>y=40 hoặc y=-280

=>x=30 hoặc x=210

Bình luận (0)
HA
Xem chi tiết
AD
31 tháng 7 2021 lúc 21:43

A=x(x-1)+(x+y)(y-x)

=x2-x+y2-x2

=y2-x

#H

Bình luận (0)
 Khách vãng lai đã xóa
QA
1 tháng 8 2021 lúc 8:32

Trả lời:

A = x ( x - 1 ) + ( x + y ) ( y - x )

= x2 - x + y2 - x2

= y2 - x

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
NT
18 tháng 6 2023 lúc 9:59

=>9x+4y=360 và 36/x-36/y=1/2

=>4y=360-9x và 36/x-36/y=1/2

=>y=90-2,25x và \(\dfrac{36}{x}-\dfrac{36}{90-2,25x}=\dfrac{1}{2}\)

=>\(\dfrac{3240-81x-36x}{x\left(90-2,25x\right)}=\dfrac{1}{2}\)

=>90x-2,25x^2=2(3240-117x)

=>-2,25x^2+90x-6840+234x=0

=>x=118,3 hoặc x=25,7

=>y=-176,175 hoặc y=32,175

Bình luận (0)
H24
Xem chi tiết
MY
16 tháng 7 2021 lúc 13:29

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

Bình luận (1)