Những câu hỏi liên quan
H24
Xem chi tiết
KS
15 tháng 3 2022 lúc 12:01

 Nối BD, gọi diện tích các tam giác (theo hình vẽ) là S1,S2,S3,S4.S1,S2,S3,S4. Ta có BN là trung tuyến của ΔBCDΔBCD nên S1=S2S1=S2 (chung đường cao, đáy bằng nhau)

Tương tự S3=S4S3=S4

⇒S2+S3=S1+S4=12SABCD⇒S2+S3=S1+S4=12SABCD

Hay SBNDM=1/2SABCD.SBNDM=1/2SABCD.

 



 

Bình luận (3)
LN
Xem chi tiết
NT
9 tháng 11 2021 lúc 22:20

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

Bình luận (0)
PT
Xem chi tiết
LH
11 tháng 8 2016 lúc 19:28

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

Bình luận (1)
DL
Xem chi tiết
TM
29 tháng 7 2021 lúc 8:11

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
PK
10 tháng 7 2020 lúc 20:42

Gọi M,N,P lần lượt là trung điểm các cạnh BF,AF,AB 

Áp dụng tính chất đường trung bình suy ra được:

K,N,M thẳng hàng (//BE)

J,P,M thẳng hàng (//FD)

I,P,N thẳng hàng (//CF)

Áp dụng định lý Menalaus vào ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN cho thấy:Khi và chỉ khi KN/KM×JM/JP×IP/IN=1 (*) thì suy ra đpcm.

Thật vậy:

KN/KM=AE/EB (1)

JM/JP=FD/AD (2)

IP/IN=BC/FC (3) (cái này là do tính chất đường trung bình đó bạn. Khi bạn biến đổi KN và KM thì lần lượt ra (1/2)×AE và (1/2)×BE. Khi lập tỉ số KN/KM thì bạn gạch bỏ 1/2 là ra AE/BE. Chứng minh tương tự với các tỉ số kia. Mình nhớ có một tính chất nói về cái này mà mình quên tên nó rồi hic.)

Áp dụng định lý Menalaus vào ∆ABF với các điểm C,D,E lần lượt thuộc phần kéo dài của các cạnh BF,AF,AB:

AE/EB×FD/AD×BC/FC=1 (4)

Từ (1),(2),(3) và (4) ==> KN/KM×JM/JP×IP/IN=1.

==>I,J,K thẳng hàng (theo định lý Menalaus trong ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN).

Vậy I,J,K thẳng hàng (đpcm).

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
LP
Xem chi tiết
NT
6 tháng 11 2021 lúc 0:12

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

Bình luận (0)
H24
Xem chi tiết
PH
6 tháng 10 2018 lúc 15:22

Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD

Mà AB = CD (gt)

\(\Rightarrow KN=NI=IM=MK\)

\(\Rightarrow KNIM\)là hình thoi

Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)

Chúc bạn học tốt.

Bình luận (0)
PN
Xem chi tiết