Cho tứ giác ABCD. Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh SBNDM=1/2SABCD.
cho tứ giác abcd gọi m ,n,p,q lần lượt là trung điểm của ab,bc,cd và da chứng minh tứ giác mnpq là hình bình hành
Cho tứ giác ABCD gọi M,N lần lượt là trung điểm AD,BC..Biết MN=(AB+CD)/2 chứng minh ABCD là hình thang.?
Cho tứ giác ABCD. Giả sử đường trung trực cạnh AB cắt đường trung trực cạnh CD tại điểm M nằm trong tứ giác đã cho và ^AMB=^CMD = 60`. Gọi K, N, L lần lượt là trung điểm của các đoạn thẳng BC, AM, DM. Chứng minh tam giác LKN đều.
Cho hình vuông ABCD có M,N,P lần lượt là trung điểm của các cạnh BC,CD,DA . Gọi H là giao điểm của AN và DM. Chứng minh rằng: a, Tứ giác BMDP là hình bình hành b, BA = BH
Cho tứ giác lồi ABCD, AB cắt CD tại E, AD cắt BC tại F. Gọi I,J,K lần lượt là trung điểm của AC,BD,EF. Chứng minh: I,J,K thẳng hàng
Cho tứ giác ABCD, gọi M,N lần lượt là trung điểm 2 cạnh AD và BC. Chứng minh MN ≤ AB+CD/2
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA của tứ giác ABCD.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình chữ nhật