Những câu hỏi liên quan
NT
Xem chi tiết
LC
2 tháng 5 2019 lúc 20:16

Câu 1 :

 Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)

                               \(\Leftrightarrow\left(x+1\right)^2-4=0\)

                               \(\Leftrightarrow\left(x+1\right)^2=4\)

                               \(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)

Câu 2 :

\(q\left(x\right)=x^2-10x+29\)

            \(=\left(x-5\right)^2+4\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)

Vậy đa thức trên ko có nghiệm

Bình luận (0)
DT
2 tháng 5 2019 lúc 20:23

dễ mà

câu 1

f(x)=x^2+2x-3

ta có f(x)=0

suy ra x^2+2x-3=0

tương đương:x^2-x+3x-3=0

tương đương:x(x-1)+3(x-1)=0

tương đương: (x-1)(x+3)=0

tương đương: x-1=0                  x=1

                        x+3=0                 x=-3

vậy đa thức f(x) có hai nghiệm là 1 và -3

câu 2: x^2-10x+29

tương đương: x^2-5x-5x+25+4

tương đương: x(x-5)-5(x-5)+4

tương đương: (x-5)(x-5)+4

tương đương: (x-5)^2+4

vì (x-5)^2> hoặc bằng 0 với mọi x

4>0 

suy ra x^2-10x+29 vô nghiệm

Bình luận (0)
NT
2 tháng 5 2019 lúc 20:31

3 k nha bạn tốt quá mình đag cần gấp :)

Bình luận (0)
VC
Xem chi tiết
NT
11 tháng 5 2022 lúc 21:52

\(5x^2+9>=9>0\forall x\)

nên f(x) vô nghiệm

Bình luận (0)
H24
11 tháng 5 2022 lúc 21:53

Cho `f(x)=0`

`=>5x^2+9=0`

`=>5x^2=-9` (Vô lí vì `5x^2 >= 0` mà `-9 < 0`)

Vậy đa thức `f(x)` vô nghiệm

Bình luận (14)
TC
11 tháng 5 2022 lúc 21:53

tâ có 5x2≥0∀x

mà 9 > 0

=>5x2 +9>0

hay đa thức sau vô nghiệm 

Bình luận (0)
PP
Xem chi tiết
NT
9 tháng 5 2023 lúc 21:33

a: f(1)=a+b+c=0

=>x=1 là nghiệm

b: Vì 5-6+1=0

nên f(x)=5x^2-6x+1 có một nghiệm là x=1

Bình luận (0)
OR
Xem chi tiết
HN
15 tháng 7 2016 lúc 19:17

a) Ta có : \(f\left(x\right)=x^2-10x+27=\left(x^2-10+25\right)+2=\left(x-5\right)^2+2\ge2>0\)

Vậy f(x) > 0 => Vô nghiệm.

b) Tương tự : \(g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}=\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}\right)+\frac{4}{9}-\frac{1}{9}=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)

Vậy g(x) > 0 => Vô nghiệm.

Bình luận (0)
LD
Xem chi tiết
AN
23 tháng 10 2016 lúc 21:34

Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)

=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)

Hay 2013=(a−1)(a−2).Q(1)Q(2)

Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )

=> PT vô nghiệm

=> f(x) không có nghiệm nguyên 

Bình luận (0)
HB
Xem chi tiết
TH
Xem chi tiết
EC
1 tháng 8 2021 lúc 16:00

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

Bình luận (0)
TL
1 tháng 8 2021 lúc 16:01

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

Bình luận (0)
TN
Xem chi tiết
VT
Xem chi tiết
DL
12 tháng 10 2024 lúc 20:20

Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo bài tương tự tại đây nhé.

Bình luận (0)