Tính: \(\left(\sqrt{31-12\sqrt{3}}\right)+\left(\sqrt{31+12\sqrt{3}}\right)\)
\(C=\dfrac{12-\sqrt{15.135}+\left(\sqrt{31}\right)^2}{\sqrt{\dfrac{80}{45}}-\dfrac{10}{\left(\sqrt{3}\right)^2}}\)
Bạn Lê Quỳnh Trang có thể lm rõ cho tớ không
Rút gọn biểu thức: \(C=\frac{12-\sqrt{15.135}+\left(\sqrt{31}\right)^2}{\sqrt{\frac{80}{45}-\frac{10}{\left(\sqrt{3}\right)^2}}}\)
Đề sai rồi bạn, vì biểu thức trong căn ở mẫu nhỏ hơn 0 rồi
Rút gọn biểu thức:
\(C=\frac{12-\sqrt{15.135}+\left(\sqrt{31}\right)^2}{\sqrt{\frac{80}{45}}-\frac{10}{\left(\sqrt{3}\right)^2}}\)
\(C=\dfrac{12-\sqrt{15\cdot9\cdot15}+31}{\dfrac{4}{3}-\dfrac{10}{3}}=\dfrac{12-3\cdot15+31}{-2}=\dfrac{-2}{-2}=1\)
P=\(\left(\frac{3}{\sqrt{a+2}}+\sqrt{a+2}\right):\left(2+\frac{6}{\sqrt{a^2-4}}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị biểu thức tại \(a=31-12\sqrt{5}\)
Tính GTBT: \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\) biết
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)
\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)
Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)
\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)
Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)
Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)
Vậy \(M=-20\sqrt{2}\)
theo bài ra
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)
\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)
\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)
\(x^3=4\sqrt{2}-3.1x\)
\(x^3=4\sqrt{2}-3x\)
\(< =>x^3+3x-4\sqrt{2}=0\)
rồi làm y tương tự rồi thế vào M là ra
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
a) A=\(\sqrt{\left(4-\sqrt{15}\right)^2+\sqrt{15}}\)
b) B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
c) C=\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
d)D=\(\sqrt{29+12\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)
c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3\)
=6
a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)
\(A=4-\sqrt{15}+\sqrt{15}\)
\(A=4\)
b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)
\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(B=2-\sqrt{3}-1+\sqrt{3}\)
\(B=1\)
c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)
\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)
\(C=3\sqrt{5}-2-3\sqrt{5}-2\)
\(C=-4\)
d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)
\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)
\(D=2\sqrt{5}+3-2\sqrt{5}+3\)
\(D=6\)
Tìm x để các căn bậc hai sau có nghĩa
a) \(\sqrt{\dfrac{15+3x^2}{-6}}\) b) \(\sqrt{\dfrac{-81}{-12-x^2}}\)
c) \(\sqrt{\dfrac{31\left(x^2+21\right)}{3}}\) d) \(\sqrt{\dfrac{-12}{11+x^2}}\)
e) \(\sqrt{\dfrac{21}{-x^2-17}}\)
a: ĐKXĐ: 3x^2+15/-6>=0
=>3x^2+15<=0(vô lý)
b: ĐKXĐ: -81/-x^2-12>=0
=>-x^2-12<0
=>-x^2<12
=>x^2>-12(luôn đúng)
c: ĐKXĐ: 31(x^2+21)/3>=0
=>x^2+21>=0(luôn đúng)
d: ĐKXĐ: -12/x^2+11>=0
=>x^2+11<0(vô lý)
e: ĐKXĐ: 21/-x^2-17>=0
=>-x^2-17>0
=>x^2+17<0(vô lý)
Mọi người cho em hỏi:
\(\left(\frac{\sqrt{x}}{\left[\sqrt{x}-3\right]\left[\sqrt{x}+3\right]}+\frac{2}{\sqrt{x}+3}-\frac{3}{\sqrt{x}-3}\right):\left(\sqrt{x}-3+\frac{12-x}{\sqrt{x}+3}\right)\)
\(\left(\frac{\sqrt{x}+2\left[\sqrt{x}-3\right]-3\left[\sqrt{x}+3\right]}{\left[\sqrt{x}-3\right]\left[\sqrt{x}+3\right]}\right):\left(\frac{\left[\sqrt{x}-3\right]\left[\sqrt{x}+3\right]+12-x}{\sqrt{x}-3}\right)\)
\(\left(\frac{\sqrt{x}+2\sqrt{x}-6-3\sqrt{x}-9}{\left[\sqrt{x}+3\right]\left[\sqrt{x}-3\right]}\right):\left(\frac{x+3\sqrt{x}-3\sqrt{x}-9+12-x}{\sqrt{x}+3}\right)\)
\(\left(\frac{-15}{\left[\sqrt{x}+3\right]\left[\sqrt{x}-3\right]}\right):\left(\frac{3}{\sqrt{x}+3}\right)\)
\(\left(\frac{-15}{\left[\sqrt{x}+3\right]\left[\sqrt{x}-3\right]}\right).\left(\frac{\sqrt{x}+3}{3}\right)\)
\(\frac{-5}{\sqrt{x}-3}\)