1/(a + b) + 1/(b + c) + 1/(c + a) >= 2/(a + 2b + c) + 2/(a + b + 2c) + 2/(2a + b + c)
Cho a,b,c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=> bc+ac+ab=0
ta có
\(bc+ac=-ab\)
<=> \(\left(bc+ac\right)^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)
tương tự
\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)
\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)
thay vào E ta đc
\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)
=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)
a,b,c>0.CMR a^2/(2a+b)(2a+c)+b^2/(2b+c)(2b+a)+c^2/(2c+a)(2c+b) >1/3
Cho a, b, c \(\ne\)0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\). Tính : \(E=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)
Cho a, b,c : abc = 1. Chứng minh:
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}+\dfrac{b^2c^2}{2b^2+c^2+3b^2c^2}+\dfrac{c^2a^2}{2c^2+a^2+3a^2c^2}\le\dfrac{1}{2}\)
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}=\dfrac{a^2b^2}{\left(a^2+b^2\right)+\left(a^2+a^2b^2\right)+2a^2b^2}\le\dfrac{a^2b^2}{2ab+2a^2b+2a^2b^2}=\dfrac{ab}{2\left(1+a+ab\right)}\)
Tương tự và cộng lại;
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{bc}{1+b+bc}+\dfrac{ca}{1+c+ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{abc}{a+ab+abc}+\dfrac{ab.ca}{ab+abc+ab.ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{1}{a+ab+1}+\dfrac{a}{ab+1+a}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a, b, c \(\ne\)0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}=0\). Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
Hình như sai đề :
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)
\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)
\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )
Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)
\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)
\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )
CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )
Thay ( * ) và ( * ') vào E , ta được :
\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)
\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)
\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)
\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)
\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)
\(=\dfrac{0}{2}=0\)
Vậy \(E=0\)
Cho \(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}=1\)
Tính \(\dfrac{a^2}{2a+b+c}+\dfrac{b^2}{2b+a+c}+\dfrac{c^2}{2c+a+b}\)
cho abc=36,1/a+1/b+1/c=o.
Tính Q=a^2(b^2+c^2)-b^2c^2/a^2b^2c^2*b^2(c^2+a^2)-c^2a^2/a^2b^2c^2*c^2(a^2+b^2)-a^2b^2/a^2b^2c^2
1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
2.
\(a,Sửa:a^6+a^4+a^2b^2+b^4-b^6\\ =\left(a^6-b^6\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2+b^2\right)^2-a^2b^2\right]\left(a^2-b^2+1\right)\\ =\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(a^2-b^2+1\right)\\ b,=\left(a^3+b^3\right)-1+3ab\\ =\left(a+b\right)^3-3ab\left(a+b\right)-1+3ab\\ =\left(a+b-1\right)\left(a^2+2ab+b^2+a+b+1\right)-3ab\left(a+b-1\right)\\ =\left(a+b-1\right)\left(a^2+b^2+1+a+b-ab\right)\)
\(c,=a^2b^2\left(b-a\right)+b^2c^2\left(c-a+a-b\right)-c^2a^2\left(c-a\right)\\ =-a^2b^2\left(a-b\right)+b^2c^2\left(a-b\right)+b^2c^2\left(c-a\right)-c^2a^2\left(c-a\right)\\ =\left(a-b\right)\left(b^2c^2-a^2b^2\right)+\left(c-a\right)\left(b^2c^2-c^2a^2\right)\\ =b^2\left(a-b\right)\left(c-a\right)\left(c+a\right)+c^2\left(c-a\right)\left(b-a\right)\left(b+a\right)\\ =\left(a-b\right)\left(c-a\right)\left[b^2\left(c+a\right)-c^2\left(b+a\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b^2c+ab^2-bc^2-ac^2\right)\\ =\left(a-b\right)\left(c-a\right)\left[bc\left(b-c\right)+a\left(b-c\right)\left(b+c\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(bc+ab+ac\right)\)
c/m : 2(a/(b+2c)+b/(c+2a)+c/(a+2b)) - (b/(b+2a)+c/(c+2b)+a/(a+2c)) >= 1
nghĩa là gì ?
Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR : a^2b + b^2c + c^2a >= 9a^2b^2c^2/(1+2a^2b^2c^2
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Áp dụng BĐT Cô-si cho 3 số dương ,ta có :
\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
tương tự : \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\), \(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)
Cộng 3 BĐT trên theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi a = b = c = 1