\(\dfrac{5^{x+1}}{125}\)=\(\dfrac{1}{25^{x-2}}\)
1/ (\(\left(-\dfrac{2}{3}\right)\)\(^2\) x \(\dfrac{-9}{8}\) - 25% x \(\dfrac{-16}{5}\)
2/ -1\(\dfrac{2}{5}\) x 75% + \(\dfrac{-7}{5}\) x 25%
3/ -2\(\dfrac{3}{7}\) x (-125%) + \(\dfrac{-17}{7}\) x 25%
4/ (-2)\(^3\) x (\(\dfrac{3}{4}\) x 0.25) : (2\(\dfrac{1}{4}\) - 1\(\dfrac{1}{6}\))
1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)
\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)
\(=\dfrac{-1}{2}+\dfrac{4}{5}\)
\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)
2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)
\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)
\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)
3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)
\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)
\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{17}{7}\)
4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)
\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)
\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)
tim x ,
a, (1/3-1/2)^x-1=1/36
b,\(\dfrac{25}{5^x}\)= \(\dfrac{1}{125}\)
a) \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^x-1=\dfrac{1}{36}\)
\(\Rightarrow\left(\dfrac{1}{6}\right)^x=1\dfrac{1}{36}\)
\(\Rightarrow x=2\)
b) \(\dfrac{25}{5x}=\dfrac{1}{125}\)
\(\Rightarrow25\cdot125=5x\)
\(\Rightarrow5^2\cdot5^3=5^x\)
\(\Rightarrow x=5\)
Bn Đời về cơ bản là buồn... cười!!! nhìn sai đề ở ý a .
a) \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\dfrac{1}{6}^2\)
\(\Leftrightarrow x-1=2\Rightarrow x=3\)
b) \(\dfrac{25}{5^x}=\dfrac{1}{125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{3125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{5^5}\Rightarrow x=5\)
tìm x biết: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
Áp dụng tính chất tỉ lệ thức, ta có: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Rightarrow25.125=5^x\)
\(\Rightarrow5^2.5^3=5^x\)
\(\Rightarrow x=5\)
Vậy x = 5
\(\dfrac{25}{5^x}=\dfrac{1}{125}\)
= 25 . 125 = 5x
=> 52 . 53 = 5x
<=> 5x =52.53
=> 5x = 55
=> x = 5
tim x : a, (\(\dfrac{1}{3}\)-\(\dfrac{1}{2}\))\(^{x-1}\)=\(\dfrac{1}{36}\)
b,\(\dfrac{25}{5^x}\)=\(\dfrac{1}{125}\)
a) \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\) \(\Leftrightarrow\left(\dfrac{-1}{6}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(\dfrac{-1}{6}\right)^{x-1}=\left(\dfrac{1}{6}\right)^2\)
\(\Leftrightarrow x-1=2\Rightarrow x=3\)
b) \(\dfrac{25}{5^x}=\dfrac{1}{125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{3125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{5^5}\Rightarrow x=5\)
a) \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
\(\Leftrightarrow x-1=2\Rightarrow x=2+1=3\)
b) \(\dfrac{25}{5^x}=\dfrac{1}{125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{3125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{5^5}\Rightarrow x=5\)
Giờ mới đúng thật nè
a, (\(\dfrac{1}{3}-\dfrac{1}{2}\))x-1 = \(\dfrac{1}{36}\)
<=> (\(-\dfrac{1}{6}\))x-1 = \(\dfrac{1}{36}\)
<=> (\(-\dfrac{1}{6}\))x-1 = (\(-\dfrac{1}{6}\))2
<=> x - 1 = 2
<=> x = 3
@Nguyễn Thị Phương Thảo
Tìm x biết:
\(7^{2+x}+2\times7^{x-1}=345\)
\(81^{-2\times x}\times27^x=9^5\)
\(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\dfrac{\left(-7\right)^{2\times x-1}}{49}=-343\)
a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)
\(\Leftrightarrow7^x=7\)
hay x=1
c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
=>x-1=2
hay x=3
d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)
hay x=5
Tìm x, biết:
a) \(\dfrac{2}{3}\)x - \(\dfrac{1}{2}\)x = \(\left(-\dfrac{7}{12}\right)\) . \(1\dfrac{2}{5}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2\) = \(\dfrac{9}{4}\)
c) (1,25 - \(\dfrac{4}{5}\)x)3 = -125
a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)
\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)
\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{49}{10}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)
+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)
\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{13}{15}\)
+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)
\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)
\(\Rightarrow x=\dfrac{125}{16}\)
a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)
\(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)
\(x\). \(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)
\(x\) = - \(\dfrac{49}{60}\).6
\(x\) = -\(\dfrac{49}{10}\)
Tìm \(x,y\in N\):
a) 32x+1 . 7y = 9 . 21x
b) \(\dfrac{27^x}{3^{2x-y}}=243\) và \(\dfrac{25^x}{5^{x+y}}=125\)
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
giai pt
\(\sqrt{x-5}+\dfrac{1}{3}\sqrt{9x-45}=\dfrac{1}{5}\sqrt{25-125+6}\)
đề tào lao, nhìn VP biết có vấn đề
Xét thấy : \(\sqrt{25-125+6}\)<0
mà: \(\sqrt{a}\)\(\ge\)0
\(\Rightarrow\)Vế phải ko hợp lí\(\Rightarrow\)X vô nghiệm
tinh
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3}{4}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}\)
\(=1\)
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}=\dfrac{1}{4}+\dfrac{3}{4}=1\)