H24

Những câu hỏi liên quan
NA
Xem chi tiết
AH
5 tháng 8 2021 lúc 21:42

Lời giải:

ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow (3x^2-10x-25)=2(x+3)(\sqrt{2x-1}-3)$

$\Leftrightarrow (x-5)(3x+5)=2(x+3).\frac{2(x-5)}{\sqrt{2x-1}+3}$

\(\Leftrightarrow (x-5)\left[(3x+5)-\frac{4(x+3)}{\sqrt{2x-1}+3}\right]=0\)

Xét biểu thức trong ngoặc vuông:

\(\Leftrightarrow (3x+5)(\sqrt{2x-1}+3)=4(x+3)\)

\(\Leftrightarrow (3x+5)\sqrt{2x-1}=-(3+5x)\)

Dễ thấy điều này vô lý vì với $x\geq \frac{1}{2}$ thì vế trái không âm còn vế phải âm.

Vậy $x-5=0\Leftrightarrow x=5$

Bình luận (0)
TH
Xem chi tiết
NT
15 tháng 11 2022 lúc 20:34

1: =>(x+2)^2-3|x+2|=0

=>|x+2|(|x+2|-3)=0

=>x+2=0 hoặc x+2=3 hoặc x+2=-3

=>x=-2; x=1; x=-5

Bình luận (0)
PV
Xem chi tiết
NT
21 tháng 3 2023 lúc 13:26

a: 3x^2-4x+1=0

a=3; b=-4; c=1

Vì a+b+c=0 nên phương trình có hai nghiệm là:

x1=1 và x2=c/a=1/3

b: -x^2+6x-5=0

=>x^2-6x+5=0

a=1; b=-6; c=5

Vì a+b+c=0 nên phương trình có hai nghiệm là;
x1=1; x2=5/1=5

Bình luận (0)
HC
Xem chi tiết
DL
13 tháng 5 2022 lúc 15:08

phương trình có : \(\Delta=b^2-4ac=7^2-4.3.2=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{7+\sqrt{25}}{6}=2\\x_2=\dfrac{7-\sqrt{25}}{6}=\dfrac{1}{3}\end{matrix}\right.\)

vậy phương trình đã cho tập nghiệm \(S=\left\{\dfrac{1}{3};2\right\}\)

Bình luận (0)
H24
13 tháng 5 2022 lúc 15:11

`3x^2-7x+2=0`

`<=>3x^2-6x-x+2=0`

`<=>3x(x-2)-(x-2)=0`

`<=>(x-2)(3x-1)=0`

`<=>` $\left[\begin{matrix} x-2=0\\ 3x-1=0\end{matrix}\right.$

`<=>` $\left[\begin{matrix} x=2\\ x=\dfrac{1}{3}\end{matrix}\right.$

Vậy `S={2;1/3}`

Bình luận (0)
Xem chi tiết
TN
Xem chi tiết
MH
29 tháng 3 2022 lúc 20:47

a) \(\text{Δ}=8^2-4.3.4=16\)

\(\left[{}\begin{matrix}x=\dfrac{-8+4}{2.3}=-\dfrac{2}{3}\\x=\dfrac{-8-4}{2.3}=-2\end{matrix}\right.\)

Bình luận (0)
MH
29 tháng 3 2022 lúc 20:48

b) \(\text{Δ}=9^2-4.1.18=9\)

\(\left[{}\begin{matrix}x=\dfrac{-9+3}{2}=-3\\x=\dfrac{-9-3}{2}=-6\end{matrix}\right.\)

Bình luận (0)
MH
29 tháng 3 2022 lúc 20:49

c) \(x^2+12+32=0\)

\(x^2=-44\)

mà \(x^2\ge0\forall x\)

\(\Rightarrow\) pt vô nghiệm

Bình luận (0)
DT
Xem chi tiết
EC
5 tháng 7 2019 lúc 14:09

3x2 + 2x - 1 = 0

=> 3x2 + 3x - x - 1 = 0

=> 3x(x + 1) - (x + 1) = 0

=> (3x - 1)(x + 1) = 0

=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)

x2 - 5x + 6 = 0

=> x2 - 2x - 3x + 6 = 0

=> x(x - 2) - 3(x - 2) = 0

=> (x - 3)(x - 2) = 0

=> \(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

3x2 + 7x + 2 = 0

=> 3x2 + 6x + x  + 2 = 0

=> 3x(x + 2) + (x + 2) = 0

=> (3x + 1)(x + 2) = 0

=> \(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

Bình luận (0)
VT
5 tháng 7 2019 lúc 14:23

1, \(3x^2+2x-1=0\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)

2, \(x^2-5x+6=0\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

3, \(3x^2+7x+2=0\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}}\)

Bình luận (0)
ZZ
5 tháng 7 2019 lúc 15:44

\(x^2-4x+1=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)=3\)

\(\Leftrightarrow\left(x-2\right)^2=3\)

\(\Leftrightarrow x=\sqrt{3}+2;x=2-\sqrt{3}\)

\(2x^2-6x+1=0\)

\(\Leftrightarrow4x^2-12x+2=0\)

\(\Leftrightarrow\left(2x-3\right)^2=7\)

\(\Leftrightarrow x=\frac{\sqrt{7}+3}{2};x=\frac{3-\sqrt{7}}{2}\)

\(3x^2+4x-4=0\)

\(\Leftrightarrow3x^2-2x+6x-4=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)

\(\Leftrightarrow x=-2;x=\frac{2}{3}\)

Bình luận (0)
NV
Xem chi tiết
NN
27 tháng 4 2020 lúc 8:48

Câu a ) 

\(2x^4+3x^2-2=0\left(1\right)\)

Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:

\(2t^2+3t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)

\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)

Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)

Vậy tập nghiệm của phương trình là  \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)

 
Bình luận (0)
 Khách vãng lai đã xóa
NN
27 tháng 4 2020 lúc 9:36

Câu b ) 

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)

\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)

\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)

\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)

\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)

\(\Leftrightarrow3m^2+6m+3=16m\)

\(\Leftrightarrow3m^2-10m+3=0\)

\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
NT
17 tháng 5 2022 lúc 9:29

a: ĐKXĐ: x<>0

\(\Leftrightarrow3x^2+10x-3x-10=0\)

=>(3x+10)(x-1)=0

=>x=-10/3 hoặc x=1

b: ĐKXĐ: \(x\in R\)

\(\Leftrightarrow4x-17=0\)

hay x=17/4

c: ĐKXĐ: \(x\ne-5\)

=>2x-5=0

hay x=5/2

d: ĐKXĐ: x<>-2/3

\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)

\(\Leftrightarrow6x^2+4x-3x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

=>(6x+7)(x-1)=0

=>x=1 hoặc x=-7/6

Bình luận (0)
NA
Xem chi tiết
AH
31 tháng 1 2023 lúc 0:04

Bài 1:
$2x^4-3x^2-5=0$

$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$

$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$

$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)

$\Leftrightarrow x^2=\frac{5}{2}$

$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$

Bình luận (0)
AH
31 tháng 1 2023 lúc 0:09

Bài 2:

a. Khi $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x^2-x)-(5x-5)=0$

$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$

$\Leftrightarrow m^2+14m+1\geq 0(*)$

Áp dụng định lý Viet:

$x_1+x_2=m+5$
$x_1x_2=-m+6$

Khi đó:
$x_1^2x_2+x_1x_2^2=18$

$\Leftrightarrow x_1x_2(x_1+x_2)=18$

$\Leftrightarrow (m+5)(-m+6)=18$

$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$

$\Leftrightarrow (m+3)(m-4)=0$

$\Leftrightarrow m=-3$ hoặc $m=4$

Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.

 

Bình luận (0)