giai pt
(12x+7)^2(3x+2)(2x+1)=3
Giai PT:\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\Leftrightarrow\)\(\left(144x^2+168x+49\right)\left(6x^2+7x+2\right)=3\)
Đặt \(6x^2+7x+2=a\Rightarrow144x^2+168x+49=24a+1\)
Phương trình tương đương \(a\left(24a+1\right)=3\)\(\Leftrightarrow24a^2+a-3=0\)
tự giải tiếp
Giải pt
\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
Lời giải:
Tập xác định của phương trình
Biến đổi vế trái của phương trình
Phương trình thu được sau khi biến đổi
\(\Leftrightarrow\left(144x^2+168x+49\right)\left(6x^2+7x+2\right)=3\)
Đặt \(6x^2+7x+2=t\Rightarrow6x^2+7x=t-2\)
\(\Rightarrow144x^2+168x+49=24\left(6x^2+7x\right)+49=24\left(t-2\right)+49=24t+1\)
Phương trình trở thành:
\(\left(24t+1\right)t=3\Leftrightarrow24t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{1}{3}\\t=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x^2+7x+2=\dfrac{1}{3}\\6x^2+7x+2=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x^2+7x+\dfrac{5}{3}=0\\6x^2+7x+\dfrac{19}{8}=0\end{matrix}\right.\) (bấm máy)
giai pt (2x+7)2.(3x+2).(2x+1)=3
giai phuong trinh
2x(8x - 1)^2 (4x - 1) = 9
(12x + 7)^2 (3x + 2)(2x + 1) = 3
giai chi tiet gium nha mik tick cho
bài 1 :
\(\Rightarrow x=-\frac{1}{4}\) hoặc \(x=\frac{1}{2}\)
bài 2 :
\(\Leftrightarrow\left(2x+1\right)\left(3x+2\right)\left(12x+7\right)^2-3=\left(3x+1\right)\left(6x+5\right)\left(48x^2+56x+19\right)\)
\(\Rightarrow3x+1=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow6x+5=0\)
\(\Rightarrow6x=-5\)
Áp dụng Delta ta có :
\(\Rightarrow48x^2+56x+19=0\)
\(\Rightarrow56^2-4\left(48.19\right)=-512\)
=>D<0 ko có nghiệm thực ( ko có hình tam giác nên thay tạm )
\(\Rightarrow x=-\frac{5}{6}\) hoặc \(x=-\frac{1}{3}\)
tôi nhớ có 1 lần tôi làm mà ông ko tik nhé
a/ 2x(8x - 1)2(4x - 1) = 9
=> (64x2 - 16x + 1) (8x2 - 2x) = 9
- Nhân 2 vế cho 8 ta đc:
(64x2 - 16x + 1) (64x2 - 16x) = 72
- Đặt a = 64x2 - 16x ta đc:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a - 8)(a + 9) = 0
=> a = 8 hoặc a = -9
- Với a = 8 => 64x2 - 16x = 8 => 64x2 - 16x - 8 = 0 => (2x - 1)(4x + 1) = 0 => x = 1/2 hoặc x = -1/4
- Với a = -9 => 64x2 - 16x = -9 => 64x2 - 16x + 9 = 0 , mà 64x2 - 16x + 9 > 0 => pt vô nghiệm
Vậy x = 1/2 , x = -1/4
Giai PT a, 6/x^2-1 + 5 = 8x-1/4x+4 - 12x-1/4-4x
b, 2x+1/2x-1 - 2x-1/2x+1 = 8/4x^2 -1
c, 3/2x-16 + 3x-20/x-8 + 1/8 = 13x-102/3x-24
d, x+4/x^2-3x+2 - x+1/x^2 -4x+3 = 2x+5/x^2-4x+3
Giúp e vs ạ Giải bất pt: a) 2x - x(3x + 1) < 15 - 3x(x + 2) b) 4(x - 3)² - (2x - 1)² ≥ 12x
a: =>2x-3x^2-x<15-3x^2-6x
=>x<-6x+15
=>7x<15
=>x<15/7
b: =>4x^2-24x+36-4x^2+4x-1>=12x
=>-20x+35>=12x
=>-32x>=-35
=>x<=35/32
\(a,2x-x\left(3x+1\right)< 15-3x\left(x+2\right)\\ \Leftrightarrow2x-3x^2-x< 15-3x^2-6x\\ \Leftrightarrow3x^2-3x^2+2x+6x-x< 15\\ \Leftrightarrow7x< 15\\ \Leftrightarrow x< \dfrac{15}{7}\)
Vậy S={-∞; 15/7}
\(b,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12x\\ \Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\ge0\\ \Leftrightarrow4x^2-4x^2-24x+4x-12x\ge-36+1\\ \Leftrightarrow-32x\ge-35\\ \Leftrightarrow x\le\dfrac{35}{32}\)
Vậy S={-∞; 35/32]
bài 1 phân tích đa thức thành nhân tử
a)3x(x-7)+2xy-14y
b)9(2x-5)^2+15x-6x^2
c)6x^2 -12x+6
d)-20x^2+60xy-45y^2
e)2xy^3-16x^4
f)3x^4-48
g)x^2-z^2+4xy+4y^2
h)x^2-z^2+2xy-6zt+y^2-9t^2
baif2 pt đa thức thanhhf nhân tử
a)x^2-12x+20
b)2x^2-x-15
c)x^3-x^2+x-1
d)2x^3-5x-6
e)4y^4+1
f)x^7+x^5+x^3
g)(x^2+x)^2-5(x^2+x)+6
h)(x^2+2x)^2-2(x+1)^2-1
i)x^2+4xy+4y^2-4(x+2y)+3
j)x(x+1)(x+2)(x+3)-3
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
giai pt :\(2x^3-x^2+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
x= 0.761322463768116,
x= 0.369494467346496,
x=1.57660410301179