Những câu hỏi liên quan
YS
Xem chi tiết
VM
23 tháng 1 2017 lúc 17:35

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

Bình luận (0)
VM
23 tháng 1 2017 lúc 17:38

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Bình luận (0)
HK
Xem chi tiết
NC
26 tháng 10 2018 lúc 2:39

A H C B K

Kẻ đường cao BK của Tam giác ABC 

Đặt BK= x (0<x<5)

\(\widehat{BAC}=135^o\Rightarrow\widehat{BAK}=45^o\)( hai góc bù nhau)

=> Tam giác BKA là tam giác vuông cân tại B => AK=BK=x

Ta có: Diện tích tam giác ABC=AH.BC:2=BK.AC:2=> 5.1=x.AC=> AC=\(\frac{5}{x}\)

=> KC=x+\(\frac{5}{x}\)

Mặt khác Tam giác BKC vuông tại K => BC2=BK2+KC2=> 52=x2+(x+5/x)2

<=> 2x4-15x2+25=0  <=> \(\orbr{\begin{cases}x=\sqrt{5}\\x=\sqrt{\frac{5}{2}}\end{cases}}\)

Với x=\(\sqrt{5}\); AB=\(\sqrt{10}\); AC=\(\sqrt{5}\)

Với x=\(\sqrt{\frac{5}{2}}\); AB=\(\sqrt{5}\); AB=\(\sqrt{10}\)

( Các bước làm tóm tắt, chỗ nào không hiểu bạn hỏi lại nhé!!!) Chúc bạn học tốt!!!

Bình luận (0)
HC
29 tháng 11 2018 lúc 10:04

tam giác BKA là tam giác vuông cân tại K chứ 

Bình luận (0)
HN
Xem chi tiết
NT
13 tháng 2 2022 lúc 15:42

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

Bình luận (0)
NT
13 tháng 2 2022 lúc 15:45

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2018 lúc 18:08

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm

Bình luận (0)
HN
Xem chi tiết
AH
9 tháng 10 2021 lúc 9:17

Bài 1:

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)

$CH=BC-BH=10-3,6=6,4$ (cm)

Tiếp tục áp dụng HTL: 

$AH^2=BH.CH=3,6.6,4$

$\Rightarrow AH=4,8$ (cm)

$AC^2=CH.BC=6,4.10=64$

$\Rightarrow AC=8$ (cm)

Bình luận (0)
AH
9 tháng 10 2021 lúc 9:19

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)

$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)

Bình luận (0)
AH
9 tháng 10 2021 lúc 9:21

3. 

$BC=BH+CH=16a+9a=25a$

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH=16a.9a=(12a)^2$

$\Rightarrow AH=12a$ (do $a>0$)

$AB=\sqrt{BH^2+AH^2}=\sqrt{(16a)^2+(12a)^2}=20a$

$AC=\sqrt{CH^2+AH^2}=\sqrt{(9a)^2+(12a)^2}=15a$

 

Bình luận (0)
AM
Xem chi tiết
NT
9 tháng 5 2023 lúc 19:25

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

Bình luận (0)
MP
9 tháng 5 2023 lúc 19:39

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

Bình luận (0)
NH
Xem chi tiết
NM
3 tháng 10 2021 lúc 14:04

Áp dụng Pytago \(BC=\sqrt{AB^2+AC^2}=\sqrt{4}=2\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot CH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,5\left(cm\right)\\CH=\dfrac{AC^2}{BC}=0,5\left(cm\right)\\AH=\sqrt{1,5\cdot0,5}=\dfrac{\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
KU
Xem chi tiết
NS
Xem chi tiết
NT
5 tháng 2 2022 lúc 23:25

Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:

\(AC^2=AH^2+HC^2\) (định lí pitago)

\(\Rightarrow AH^2=AC^2-HC^2\)

\(\Rightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}\)

\(\Rightarrow AB=3,75\left(cm\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:

\(BC^2=AB^2+AC^2\) (định lí pitago)

\(\Rightarrow BC=\sqrt{3,75^2+5^2}=6,25\left(cm\right)\)

Bình luận (1)
NT
5 tháng 2 2022 lúc 23:00

\(AH=\sqrt{AC^2-HC^2}=3\left(cm\right)\)

\(HB=\dfrac{AH^2}{HC}=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=4+2,25=6,25(cm)

\(AB=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

Bình luận (0)