Những câu hỏi liên quan
PT
Xem chi tiết
NL
2 tháng 10 2019 lúc 5:23

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow x^2+4+2x=3\sqrt{x\left(x^2+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{x^2+4}=b>0\end{matrix}\right.\)

\(\Rightarrow b^2+2a^2=3ab\)

\(\Leftrightarrow2a^2-3ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x^2+4}=2\sqrt{x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2-4x+4=0\end{matrix}\right.\) \(\Rightarrow x=2\)

Bình luận (0)
L1
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
IT
1 tháng 4 2019 lúc 21:58

đồng đội toán còn đi hỏi đây

Bình luận (0)
H24
1 tháng 4 2019 lúc 22:14

ban giai ho to

Bình luận (0)
BB
2 tháng 4 2019 lúc 20:47

mk cx toán nek

câu này cx bình thường, bn cố nhìn ik , ra ngay thôi, mk mún bn tự suy nghĩ tư duy

Bình luận (1)
LT
Xem chi tiết
PA
15 tháng 8 2016 lúc 9:22

để mk làm cho ; bài này dùng liên hợp

pt<=> \(x+1-\sqrt{x^2-2x+5}+2x+4-2\sqrt{4x+5}+x^3-2x^2+2x-1=0\) ( ĐKXĐ: \(x\ge-\frac{5}{4}\))

<=> \(\frac{x^2+2x+1-\left(x^2-2x+5\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{\left(2x+4\right)^2-4\left(4x+5\right)}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)

<=>: \(\frac{x^2+2x+1-x^2+2x-5}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2+16x+16-16x-20}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)

<=> \(\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2-4}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)

<=> \(\left(x-1\right)\left(\frac{4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x+4}{2x+4+2\sqrt{4x+5}}+x^2-x+1\right)=0\)

<=> x=1 ( vì \(x\ge-\frac{5}{4}\)nên cái trong ngoặc thứ 2 khác 0)

vậy x=1 

Bình luận (0)
AN
15 tháng 8 2016 lúc 9:18
Bằng 1 hông tin thử vô coi :))
Bình luận (0)
CN
Xem chi tiết
LT
Xem chi tiết
LT
15 tháng 8 2016 lúc 15:32

.

Bình luận (0)
NN
Xem chi tiết
KS
Xem chi tiết
ZZ
14 tháng 6 2020 lúc 11:32

ĐLXĐ:\(x\ge-1\)

\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)

\(\Leftrightarrow\left[\sqrt{x^2+4x+12}-\left(6-3x\right)\right]-\left[\sqrt{x+1}-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\frac{x^2+4x+12-36+36x-9x^2}{\sqrt{x^2+4x+12}+2-3x}-\frac{x+1-x^2+4x-4}{\sqrt{x+1}+x+2}=0\)

\(\Leftrightarrow\frac{-8x^2+40x-24}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)

\(\Leftrightarrow\frac{8\left(-x^2+5x-3\right)}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)

\(\Leftrightarrow\left(-x^2+5x-3\right)\left[\frac{8}{\sqrt{x^2+4x+12}+2-3x}-\frac{1}{\sqrt{x+1}+x-2}\right]=0\)

TH1:\(-x^2+5x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)

TH2:........ ( chắc vô nghiệm )

Bình luận (0)
 Khách vãng lai đã xóa
KS
14 tháng 6 2020 lúc 12:14

phần mẫu phải là \(\sqrt{x^2+4x+12}+6-3x\) chứ :vv Hơi lỗi nhưng cảm ơn nhé !!

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 6 2020 lúc 9:52

\(x^2+4x+12=\left(x+1\right)^2+2\left(x+1\right)+9\)

Đặt \(\sqrt{x+1}=a\ge0\).

PT \(\Leftrightarrow\sqrt{a^4+2a^2+9}=2a^2+a-6\)

Bình luận (0)
 Khách vãng lai đã xóa