\(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\Leftrightarrow lx-2l=3\)
(+) l x - 2 l = x - 2 khi x>=2
x - 2 = 3 => x = 5
(+) lx - 2l = 2 -x khi x<=2
2 - x = 3
-x = 1
x = -1
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-2\right|=3\Leftrightarrow x-2=+-3\Leftrightarrow x=2+-3\)
=> S=...
\(=\sqrt{\left(x-2\right)^2}=\left|x-2\right|=3\)
\(\Rightarrow TH1:x-2=3\Rightarrow x=5\)
\(TH2:x-2=-3\Rightarrow x=-1\)