Những câu hỏi liên quan
MN
Xem chi tiết
BB
Xem chi tiết
RH
15 tháng 1 2022 lúc 7:30

Áp dụng BĐT Bunyakovsky, ta có:

\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy, ta có:

\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)

Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)

Đẳng thức xảy ra khi a = b = c = 1.

Vậy GTNN của A là 1 (khi a = b = c = 1).

Bình luận (0)
VG
Xem chi tiết
H24
Xem chi tiết
AH
16 tháng 5 2021 lúc 21:58

Lời giải:

Áp dụng BĐT AM-GM:

$1\geq a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}$

Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{6ab}+\frac{1}{3ab}\geq \frac{4}{1+a^2+b^2+6ab}+\frac{1}{3ab}\)

\(=\frac{4}{1+(a+b)^2+4ab}+\frac{1}{3ab}\geq \frac{4}{1+1+4.\frac{1}{4}}+\frac{1}{3.\frac{1}{4}}=\frac{8}{3}\)

Vậy $A_{\min}=\frac{8}{3}$ khi $a=b=\frac{1}{2}$

Bình luận (0)
H24
Xem chi tiết
NL
30 tháng 12 2020 lúc 20:43

Đây là bài IMO 2001 và không cần điều kiện \(a+b+c=1\)

Áp dụng Holder:

\(P.P.\left[a\left(a^2+8bc\right)+b\left(b^2+8ac\right)+c\left(c^2+8ab\right)\right]\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow P^2\ge\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}=\dfrac{a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a^3+b^3+c^3+24abc}\)

\(\Rightarrow P^2\ge\dfrac{a^3+b^3+c^3+3.2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{a^3+b^3+c^3+24abc}=1\)

\(\Rightarrow P\ge1\)

Bình luận (0)
DF
Xem chi tiết
NL
10 tháng 1 2021 lúc 21:43

\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
NA
Xem chi tiết
MG
Xem chi tiết
KR
Xem chi tiết
HP
16 tháng 1 2021 lúc 20:25

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)