Những câu hỏi liên quan
TT
Xem chi tiết
YC
Xem chi tiết
NN
Xem chi tiết
TL
Xem chi tiết
KR
6 tháng 7 2023 lúc 11:33

`@` `\text {Ans}`

`\downarrow`

`a,`

`P(x)+Q(x) = (3x^4-2x^3+3x+11)+(3x^2- x^3-5x+3x+4-x+2x^4)`

`= 3x^4-2x^3+3x+11+3x^2- x^3-5x+3x+4-x+2x^4`

`= (3x^4 + 2x^4) + (-2x^3 - x^3) + 3x^2 + (3x + 3x - 5x - x) + (11+4)`

`= 5x^4 - 3x^3 + 3x^2 + 15`

`b,`

` A(x) = P(x) + B(x)`

Thay `B(x) = 2x^3 - 3x^4 - 2`

`A(x) = P(x) + B (x)`

`=> A (x) = (2x^3 - 3x^4 - 2)+(3x^4 - 2x^3 + 3x + 11)`

`= 2x^3 - 3x^4 - 2+ 3x^4 - 2x^3 + 3x + 11`

`= (2x^3 - 2x^3) + (-3x^4 + 3x^4) + 3x + (-2+11) `

`= 3x + 9`

`A(x) = 3x+9 = 0`

`=> 3x = 0-9`

`=> 3x = -9`

`=> x = -9 \div 3`

`=> x = -3`

Vậy, nghiệm của đa thức là `x = -3.`

Bình luận (0)
XG
Xem chi tiết
NT
11 tháng 9 2021 lúc 0:03

Bài 2: 

Ta có: \(P=3x\left(\dfrac{2}{3}x^2-3x^4\right)+9x^2\left(x^3-1\right)+x^2\left(-2x+9\right)-12\)

\(=2x^3-9x^5+9x^5-9x^2-2x^3+9x^2-12\)

=-12

Bình luận (0)
NT
11 tháng 9 2021 lúc 0:05

Bài 1: 

a: Ta có: \(x\left(x^2+2\right)+2x\left(1-\dfrac{1}{2}x^2\right)=4\)

\(\Leftrightarrow x^3+2x+2x-x^3=4\)

hay x=1

b: Ta có: \(4x^2\left(x-1\right)+x\left(x^2+4x\right)=40\)

\(\Leftrightarrow4x^3-4x^2+x^3+4x^2=40\)

\(\Leftrightarrow5x^3=40\)

hay x=2

c: Ta có: \(3x\left(x-2\right)-3\left(x^2-3\right)=8\)

\(\Leftrightarrow3x^2-6x-3x^2+9=8\)

\(\Leftrightarrow-6x=-1\)

hay \(x=\dfrac{1}{6}\)

Bình luận (0)
NH
Xem chi tiết
NK
Xem chi tiết
NT
20 tháng 3 2020 lúc 14:54

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

Bình luận (0)
 Khách vãng lai đã xóa
NT
20 tháng 3 2020 lúc 15:02

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

Bình luận (0)
 Khách vãng lai đã xóa
NT
20 tháng 3 2020 lúc 15:21

Bài 2.

\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)

ĐK: \(x\ne\pm4\)

\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)

ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)

\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)

Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)

Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$

Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
NT
22 tháng 10 2023 lúc 20:40

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

Bình luận (0)
DH
Xem chi tiết
HL
9 tháng 5 2015 lúc 12:56

a)A(x)+B(x)

=3x^4-2x^2+x-3+2x^4+3x^3-x^2-3x-2

=(3x^4+2x^4)+3x^3+(-2x^2-x^2)+(x-3x)+(-3-2)

=5x^4+3x^3-3x^2-2x-5

A(x)-B(x)

=(3x^4-2x^2+x-3)-(2x^4+3x^3-x^2-3x-2)

=3x^4-2x^2+x-3-2x^4-3x^3+x^2+3x+2

=(3x^4-2x^4)-3x^3+(-2x^2-x^2)+(x+3x)+(-3+2)

=x^4-3x^3-3x^2-4x-1

b)Thay x=-1 vào A(x)-B(x):

x^4-3x^3-3x^2-4x-1

=(-1)^4-[3(-1)]^3-[3(-1)]^2-4(-1)-1

=1+27-9+4-1=22

Vậy đa thức:x^4-3x^3-3x^2-4x-1 tại x=-1 có giá trị là 22

Bình luận (0)
NU
Xem chi tiết
NT
25 tháng 2 2023 lúc 22:51

a: =>x^2+4x-4x+1=0

=>x^2+1=0

=>Loại

b: =>2x-6+4=2x+2

=>-2=2(loại)

c: =>2(x+3)-2x-1=1

=>6-1=1

=>5=1(loại)

d =>x+3=0

=>x=-3(loại)

e: =>x^2-3x^2+3x-3x-2=0

=>-2x^2-2=0

=>x^2+1=0

=>Loại

Bình luận (0)