Những câu hỏi liên quan
KL
Xem chi tiết
PT
26 tháng 5 2021 lúc 15:04
Bình luận (0)
 Khách vãng lai đã xóa
PV
20 tháng 8 2021 lúc 16:50

a) OC và OD là các tia phân giác của hai góc kề bù \widehat{AOM}\widehat{BOM} nên OC \perp OD.

Vậy \widehat{COD}=90^{\circ}.

b) Theo tính chất của hai tiếp tuyến cắt nhau, ta có: CM=AC, DM=BD

Do đó CD=CM+DM=AC+BD.

c) Ta có: AC.BD=CM.MD

Xét tam giác COD vuông tại O và OM \perp CD nên ta có

CM. MD=OM^{2}=R^{2} (R là bán kính của đường tròn O).

Vậy AC.BD=R^2 (không đổi).

Bình luận (0)
 Khách vãng lai đã xóa
H24
21 tháng 8 2021 lúc 20:06

a) OC và OD là các tia phân giác của hai góc kề bù \widehat{AOM}\widehat{BOM} nên OC \perp OD.

Vậy \widehat{COD}=90^{\circ}.

b) Theo tính chất của hai tiếp tuyến cắt nhau, ta có: CM=AC, DM=BD

Do đó CD=CM+DM=AC+BD.

c) Ta có: AC.BD=CM.MD

Xét tam giác COD vuông tại O và OM \perp CD nên ta có

CM. MD=OM^{2}=R^{2} (R là bán kính của đường tròn O).

Vậy AC.BD=R^2 (không đổi).

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
14 tháng 8 2021 lúc 10:41

giup minh bai 1 gap voi ah!!

Bình luận (0)
BQ
Xem chi tiết
NT
30 tháng 11 2023 lúc 18:44

c: Gọi giao điểm của BC với Ax là K

BC\(\perp\)AC tại C

=>AC\(\perp\)BK tại K

=>ΔACK vuông tại C

\(\widehat{DKC}+\widehat{DAC}=90^0\)(ΔACK vuông tại C)

\(\widehat{DCK}+\widehat{DCA}=\widehat{KCA}=90^0\)

mà \(\widehat{DCA}=\widehat{DAC}\)(ΔDAC cân tại D)

nên \(\widehat{DKC}=\widehat{DCK}\)

=>DC=DK

mà DC=DA

nên DK=DA

=>D là trung điểm của AK

CH\(\perp\)AB

AK\(\perp\)AB

Do đó: CH//AK

Xét ΔOKD có CI//KD

nên \(\dfrac{CI}{KD}=\dfrac{OI}{OD}\left(1\right)\)

Xét ΔOAD có IH//AD

nên \(\dfrac{IH}{AD}=\dfrac{OI}{OD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{CI}{KD}=\dfrac{IH}{AD}\)

mà KD=AD

nên CI=IH

=>I là trung điểm của CH

Bình luận (0)
AH
Xem chi tiết
HT
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NM
22 tháng 11 2021 lúc 21:07

d. OF//BD nên \(\widehat{FOD}=\widehat{ODB}\)

Mà \(\widehat{ODB}=\widehat{ODF}\Rightarrow\widehat{FOD}=\widehat{ODF}\)

Do đó FOD cân tại F

\(\Rightarrow OF=FD\)

Áp dụng Talet: \(\dfrac{BD}{FD}=\dfrac{BD}{OF}=\dfrac{DH}{HF}\)

\(\Rightarrow\dfrac{BD}{DF}+\dfrac{DF}{HF}=\dfrac{DH}{HF}+\dfrac{DF}{HF}=\dfrac{DH+DF}{HF}=\dfrac{HF}{HF}=1\left(đpcm\right)\)

Bình luận (0)
DP
Xem chi tiết
TD
Xem chi tiết
NL
17 tháng 1 lúc 19:23

a.

Do AD là tiếp tuyến tại A \(\Rightarrow\widehat{OAD}=90^0\)

\(\Rightarrow\) 3 điểm O, A, D thuộc đường tròn đường kính OD (1)

BD là tiếp tuyến tại B \(\Rightarrow\widehat{OBD}=90^0\)

\(\Rightarrow\) 3 điểm O, B, D thuộc đường tròn đường kính OD (2)

(1);(2) \(\Rightarrow\) 4 điểm A, D, B, O cùng thuộc đường tròn đường kính OD

b.

Do D là giao điểm 2 tiếp tuyến tại A và B, theo t/c hai tiếp tuyến cắt nhau

\(\Rightarrow DA=DB\)

Mà \(OA=OB=R\)

\(\Rightarrow OD\) là trung trực của AB \(\Rightarrow OD\perp AB\) (3)

BC là đường kính và A thuộc đường tròn nên \(\widehat{BAC}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{BAC}=90^0\Rightarrow BA\perp CA\) (4)

(3);(4) \(\Rightarrow OD||CA\) (cùng vuông góc AB) hay \(OD||CE\)

Áp dụng hệ thức lượng trong tam giác vuông BCE với đường cao BA ứng với cạnh huyền:

\(BC^2=CA.CE\Rightarrow\left(2R\right)^2=CA.CE\)

\(\Rightarrow CA.CE=4R^2\)

Bình luận (2)
NL
17 tháng 1 lúc 13:36

Em kiểm tra lại đề bài, đoạn này là sao nhỉ: "Tiếp tuyến tại 4 của (O) "

Bình luận (4)
NL
17 tháng 1 lúc 19:24

loading...

Bình luận (0)