Cho A = 9²³ + 5.3⁴³. Chứng minh rằng A chia hết cho 32.
A = \(9^{23}+5.3^{43}\)
Chứng minh A chia hết cho 32.
\(A=\left(3^2\right)^{23}+5.3^{43}=3^{46}+5.3^{43}=3^{43}\left(3^3+5\right)=32.3^{43}⋮32\) (đpcm)
1)Tìm các số tự nhiên a và b, biết : a + b = 72 và ƯCLN của (a, b)=9
2)Cho A=923+5.343.Chứng minh A chia hết cho 32
a) So sánh A và B biết : A=2^29 Và B 5^39
b) cho A = 9^23 +5.3^43 chứng minh A chia hết cho 32
c) Tính A = 1-3+3^2-3^3+3^4-...+3^98-3^99+3^100
d) A= 1+2+2^2+...+2^2021và B=2^2022. Chứng minh A và B là 2 số tự nhiên liên tiếp
1)a/Chứng minh:\(A=\left(8.3^3\right).49.7^{13}\) chia hết cho 42
b/Chứng minh:\(32^8-8^{13}+4^9\)chia hết cho 72
c/Chứng minh:\(3^{21}-9^9\)chia hết cho 13
d/Chứng minh:\(\left(5^{2018}+5^{2017}+5^{2016}\right)\)chia hết cho 31
2)a/\(\frac{6^5.3^2}{4^3.9^3}\)
b/\(\frac{6^8.9^2}{4^3.81^3}\)
c/\(\frac{9^8.8^6}{16^4.3^{17}}\)
1)Cho 7.x+9.x chia hết cho 59 chứng minh 12.x+7.y chia hết cho 59
2)chứng minh rằng nếu abcdef chia hết cho 37 thì số abc+def chia hết cho 37
3)chứng minh rằng nếu số có 6 chữ số abcdef chia hết cho 32 thì 8.(abc+def) chia hết cho 32
ngọc ơi giờ này tao nhớ chúng mày lắm
chứng minh rằng A= 329+1611+243 chia hết cho 56
\(A=32^9+16^{11}+2^{43}\)
\(=\left(2^5\right)^9+\left(2^4\right)^{11}+2^{43}\)
\(=2^{45}+2^{44}+2^{43}\)
\(=2^{43}\left(2^2+2+1\right)\)
\(=2^{42}.7\)
\(=2^{39}.2^3.7\)
\(=2^{39}.8.7\)
\(=2^{39}.56\)
=> A chia hết cho 56
1. Chứng minh rằng
A = 2 + 22 + 23 + ... + 2100 chia hết cho 2,3 và 30
2. Chứng minh rằng
B = 3 + 32 + 33 + ... + 32022 chia hết cho 12 và 15
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
Cho A=3 32 33 ... 32004.Chứng minh rằng A chia hết cho 40
Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40
A = 3 + 32 + 33 +34 + ... + 32004 phải ko?
Chứng minh A = 1 + 3 + 32 + 33 + 34 + 35 + ... + 3101
Chứng minh rằng A chia hết cho 13
help meeeeeeee
`#3107.101107`
\(A=1+3+3^2+3^3+...+3^{101}\)
$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$
$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2) + ... + 3^{99}(1 + 3 + 3^2)$
$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$
$A = 13(1 + 3^3 + ... + 3^{99})$
Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`
`\Rightarrow A \vdots 13`
Vậy, `A \vdots 13.`
\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)
Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)
nên \(A\vdots13\)
\(\text{#}Toru\)