Những câu hỏi liên quan
PT
Xem chi tiết
KP
25 tháng 12 2022 lúc 21:58

dễ dàng chứng minh được BCD là tam giác vuông tại B

từ đó tính được BD

Có : SBCD = 1/2.BD.BC= 1/2.8.6 = 24 

có : BA là đường trung tuyến của △BCD.

=> SABC = 1/2. SBCD =1/2. 24 = 12

Bình luận (2)
RY
Xem chi tiết
NA
7 tháng 8 2019 lúc 21:06

a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)

mà góc EBF =90 => góc DEB =90    (1)

Chứng minh tương tự với DF//AB

\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\)   (2)

Từ (1) và (2) => tứ giác BEDF là hình chữ nhật

Bình luận (0)
DM
7 tháng 8 2019 lúc 21:12

a) vì ED//BC và DF//AB

\(\Delta ABC\)vuông tại B

Nên \(DE\perp AB\)và \(DF\perp BC\)

Xét tứ giác BEDF có:

\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)

 Vậy tứ giác BEDF là hình chữ nhật       

Bình luận (0)
H24
Xem chi tiết
NT
9 tháng 9 2021 lúc 13:21

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: ΔABC nội tiếp đường tròn đường kính BC

hay O là trung điểm của BC

\(R=\dfrac{BC}{2}\)

Bình luận (1)
H24
Xem chi tiết
NT
9 tháng 9 2021 lúc 23:04

a: Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: ΔABC nội tiếp đường tròn đường kính BC

hay O là trung điểm của BC

\(\Leftrightarrow R=\dfrac{BC}{2}\)

Bình luận (0)
NN
Xem chi tiết
NM
Xem chi tiết
PA
16 tháng 11 2016 lúc 21:24

SABC = \(\frac{4\times6}{2}\) = 12 (cm2)

BH là đường cao của tam giác BAC cân tại B.

=> BH là đường trung tuyến của tam giác ABC.

=> H là trung điểm của AC.

=> AH = HC = AC/2 = 6/2 = 3 (cm)

Tam giác HBC vuông tại H có:

BC2 = HB2 + HC2 (định lý Pytago)

= 42 + 32

= 16 + 9

= 25

BC = \(\sqrt{25}\) = 5 (cm)

Tam giác HBC vuông tại H có HI là đường trung tuyến (I là trung điểm của BC)

=> HI = BC/2 = 5/2 = 2,5 (cm)

I là trung điểm của BC (gt)

I là trung điểm của HD (H đối xứng D qua I)

=> BHCD là hình bình hành.

mà BHC = 900

=> BHCD là hình chữ nhật.

=> BHCD là hình vuông

<=> BH = HC

<=> Tam giác BAC có đường trung tuyến BH bằng 1 nửa cạnh AC.

<=> Tam giác ABC vuông tại B.

mà tam giác BAC cân tại B.

=> Tam giác BAC vuông cân tại B.

Vậy BHCD là hình vuông khi tam giác BAC vuông cân tại B.

Bình luận (0)
PT
Xem chi tiết
BG
Xem chi tiết
AH
26 tháng 12 2022 lúc 13:26

Bài 2:

Tam giác $ABC$ cân tại $A$ nên phân giác $AD$ đồng thời là đường cao

$\Rightarrow AD\perp DC$. Mà $\widehat{DAC}=\widehat{BAC}:2 =45^0$ nên $\triangle DAC$ vuông cân tại $D$

$\Rightarrow DA=DC(1)$

$D,E$ đối xứng với nhau qua $AC$ nên $AC$ là trung trực của $DE$

$\Rightarrow CD=CE; AD=AE(2)$
Từ $(1); (2)\Rightarrow AD=DC=CE=EA$

$\Rightarrow ADCE$ là hình thoi.

Mà $\widehat{ADC}=90^0$ nên $ADCE$ là hình vuông.

Bình luận (0)
AH
26 tháng 12 2022 lúc 13:28

Hình bài 2:

Bình luận (0)
AH
26 tháng 12 2022 lúc 13:57

Bài 3:
Xét tam giác $ABH$ và $ACK$ có:
$\widehat{AHB}=\widehat{AKC}=90^0$
$\widehat{A}$ chung

$\Rightarrow \triangle ABH\sim \triangle ACK$ (g.g)

$\Rightarrow \frac{AB}{AH}=\frac{AC}{AK}$

Xét tam giác $AKH$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AH}{AB}=\frac{AK}{AC}$ (cmt)

$\Rightarrow \triangle AKH\sim \triangle ACB$ (c.g.c)

$\Rightarrow \widehat{K_2}=\widehat{ACB}$ và $\widehat{H_1}=\widehat{ABC}$

Xét tam giác $KEB$ và $CHB$ có:

$\widehat{KEB}=\widehat{CHB}=90^0$
$\widehat{K_1}=\widehat{K_2}=\widehat{ACB}=\widehat{HCB}$ (cmt)

$\Rightarrow \triangle KEB\sim \triangle CHB$ (g.g)

$\Rightarrow \frac{KE}{KB}=\frac{CH}{CB}(1)$
Tương tự: 

$\triangle CFH\sim \triangle CKB$ (c.g.c)

$\Rightarrow \frac{CH}{FH}=\frac{CB}{KB}(2)$

Từ $(1); (2)\Rightarrow \frac{KE}{KB}.\frac{CH}{FH}=\frac{CH}{CB}.\frac{CB}{KB}$

$\Rightarrow \frac{KE}{HF}=1$
$\Rightarrow KE=HF$ (đpcm)

Bình luận (0)
H24
Xem chi tiết
NT
14 tháng 12 2022 lúc 22:09

a: \(S_{ABC}=\dfrac{12\cdot10}{2}=60\left(cm^2\right)\)

b: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

góc AHB=90 độ

Do đó: AHBE là hình chữ nhật

c: Xét tứ giác ABFC có

H là trung điểm chung của AF và BC

AB=AC

Do đo: ABFC là hình thoi

Bình luận (0)