x*2-5x=0
\(4x^2+5x-9=0\)
\(x^2-5x+4=0\)
\(5x^2-17x+12=0\)
\(x^2-3x-4=0\)
a: \(\Leftrightarrow4x^2+9x-4x-9=0\)
=>(4x+9)(x-1)=0
=>x=1 hoặc x=-9/4
b: \(\Leftrightarrow x^2-x-4x+4=0\)
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
c: \(\Leftrightarrow5x^2-5x-12x+12=0\)
=>(x-1)(5x-12)=0
=>x=12/5 hoặc x=1
d: \(\Leftrightarrow x^2-4x+x-4=0\)
=>(x-4)(x+1)=0
=>x=4 hoặc x=-1
a, Ta có a + b + c = 4 + 5 - 9 = 0
vậy pt có 2 nghiệm x = 1 ; x = -9/4
b, Ta có a + b + c = 1 - 5 + 4 = 0
vậy pt có 2 nghiệm x = 1 ; x = 4
c, Ta có a + b + c = 5 - 17 + 12 = 0
vậy pt có 2 nghiệm x = 1 ; x = 12/5
d, Ta có a - b + c = 1 + 3 - 4 = 0
vậy pt có 2 nghiệm x = -1 ; x = 4
Giai phường trình sau:
a, \(3x^2+2x-1=0\) e, \(4x^2-12x+5=0\) i,\(2x^2+5x-3=0\)
b,\(x^2-5x+6=0\) f, \(2x^2+5x+3=0\) j,\(x^2+6x-16=0\)
c,\(x^2-3x+2=0\) g,\(x^2+x-2=0\)
d,\(2x^2-6x+1=0\) h, \(x^2-4x+3=0\)
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
Tìm x,biết
1) 3x^2 - 4x = 0
2) (x^2 - 5x) + x - 5 = 0
3) x^2 - 5x + 6 = 0
4) 5x(x-3) - x+3 = 0
5) x^2 - 2x + 5 = 0
6) x^2 + x -6 = 0
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a. 4x(x+1)-5(x+1)=0
b. 5x(x-20)+5x-100=0
c. 2(x-2)+(x-2)^2=0
d. (x-3)^2-5x-x^2=12
a, \(4x\left(x+1\right)-5\left(x+1\right)=0\)
\(\left(x+1\right)\left(4x-5\right)\)=0
\(\left\{{}\begin{matrix}x+1=0\\4x-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right)\\4x=5\Rightarrow x=\frac{5}{4}\end{matrix}\right.\)
b, \(5x\left(x-20\right)+5x-100=0\)
\(5x\left(x-20\right)+\left(5x-100\right)=0\)
\(5x\left(x-20\right)+5\left(x-20\right)=0\)
\(\left(x-20\right)\left(5x+5\right)\)= 0
\(\left\{{}\begin{matrix}x-20=0\\5x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\5x=-5\Rightarrow x=-1\end{matrix}\right.\)
c, \(2\left(x-2\right)+\left(x-2\right)^2=0\)
tập xác định của chương trìnhRút gọn thừa số chung
Giải phương trình
Giải phương trình
Biệt thức
Biệt thức
Nghiệm
Lời giải thu được
Vậy x= 0 và x = 2
d, \(\left(x-3\right)^2-5x-x^2=12\)
\(\left(x^2-2.x.3+3^2\right)-5x-x^2=12\)
\(x^2-6x+9-5x-x^2=12\)
\(-11x+9=12\)
\(-11x=3\)
=> \(x=-\frac{3}{11}\)
tìm x
a)(5x-1)^2-5x(5x-1)=0
b)x(x+1)(x+2)=0
c)(3x+2)x-3(3x+2)=0
a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(5x-1-5x\right)=0\Leftrightarrow1-5x=0\Leftrightarrow x=\dfrac{1}{5}\)
Vaayj........
b/ \(x\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\Leftrightarrow x=-1\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)
Vay......
c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=3\end{matrix}\right.\)
Vậy.....
tìm x
a)(5x-1)^2-5x(5x-1)=0
b)x(x+1)(x+2)=0
c)(3x+2)x-3(3x+2)=0
\(a)\) \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right)\left(5x-1-5x\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right).\left(-1\right)=0\)
\(\Leftrightarrow\)\(5x-1=0\)
\(\Leftrightarrow\)\(5x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}\)
\(b)\) \(x\left(x+1\right)\left(x+2\right)=0\)
Suy ra \(x=0\) hoặc \(x+1=0\) hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
Vậy \(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
\(c)\) \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=0-2\\x=0+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=3\end{cases}}}\)
Vậy \(x=\frac{-2}{3}\) hoặc \(x=3\)
Chúc bạn học tốt ~
a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
<=> \(\left(5x-1\right)\left(5x-1-5x\right)=0\)
<=> \(-1\left(5x-1\right)=0\)
<=> \(5x-1=0\)
<=> \(5x=1\)
<=> \(x=\frac{1}{5}\)
b/ \(x\left(x+1\right)\left(x+2\right)=0\)
<=> \(x=0\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
<=> \(x=0\)hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
<=> \(\left(3x+2\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=-2\\x=3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=3\end{cases}}\)
bai 2
a)(5x+1)^2_(5x-3)(5x+3)=0
b)(x+3)(x^2-3x+9)-x(x-2)(x+2)=0
c)3x(x-2)-x+2=0
d)x(2x-3)-2(3-2x)=0
a) (5x+1)2 - (5x-3).(5x+3) = 0
25x2 + 10x + 1 - 25x2 + 9 = 0
10x + 10 = 0
10.(x+1) = 0
=> x + 1 = 0 => x = - 1
b) (x+3).(x2 - 3x + 9) - x.(x-2).(x+2) = 0
x3 + 27 - x.(x2 - 4) = 0
x3 + 27 - x3 + 4x = 0
27 + 4x = 0
4x = - 27
x = -27/4
c) 3x.(x-2) - x + 2= 0
3x.(x-2) - (x-2) = 0
(x-2).(3x-1) = 0
=> x - 2 =0 => x = 2
3x-1 = 0 => 3x = 1 => x = 1/3
d) x.(2x-3) - 2.(3-2x) = 0
x.(2x-3) + 2.(2x-3) = 0
(2x-3).(x+2) = 0
=> 2x - 3 = 0 => 2x = 3 => x = 3/2
x+ 2 = 0 => x = -2
KL:...\
Tìm x:
a) 5x(x-1)=x-1
b) 2(x+5)-x2-5x=0
c) x2-2x-3=0
d) 2x2+5x-3=0
a) 5x( x - 1 ) = x - 1
<=> 5x2 - 5x = x - 1
<=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0
<=> 5x2 - 5x - x + 1 = 0
<=> 5x( x - 1 ) - 1( x - 1 ) = 0
<=> ( x - 1 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
b) 2( x + 5 ) - x2 - 5x = 0
<=> 2x + 10 - x2 - 5x = 0
<=> -x2 - 3x + 10 = 0
<=> -x2 - 5x + 2x + 10 = 0
<=> -x( x + 5 ) + 2( x + 5 ) = 0
<=> ( x + 5 )( 2 - x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
c) x2 - 2x - 3 = 0
<=> x2 + x - 3x - 3 = 0
<=> x( x + 1 ) - 3( x + 1 ) = 0
<=> ( x + 1 )( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
d) 2x2 + 5x - 3 = 0
<=> 2x2 - x + 6x - 3 = 0
,<=> x( 2x - 1 ) + 3( 2x - 1 ) = 0
<=> ( 2x - 1 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
a) 5x ( x - 1 ) = x - 1 <=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0 <=> 5x2 - x - ( 5x - 1 ) = 0
<=> x ( 5x - 1 ) - ( 5x - 1 ) = 0 <=> ( x - 1 )( 5x - 1 ) = 0
<=> x = 1 hoặc x = 1/5
b) 2 ( x + 5 ) - x2 - 5x = 0 <=> 2 ( x + 5 ) - x ( x + 5 ) = 0
<=> ( 2 - x ) ( x + 5 ) = 0 <=> x = 2 hoặc x = -5
c) x2 - 2x - 3 = 0 <=> x2 + x - 3x - 3 = 0
<=> x ( x + 1 ) - 3 ( x + 1 ) = 0 <=> ( x - 3 ) ( x + 1 ) = 0
<=> x = 3 hoặc x = -1
d) 2x2 + 5x - 3 = 0
Ta có : delta = 52 - 4.2.3 = 25 - 24 = 1
Khi đó : x = -1 hoặc x = 3/2
a) 5x(x-1)=x-1
\(\Leftrightarrow\)5x(x-1)-(x-1)=0
\(\Leftrightarrow\)(x-1)(5x-1)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
vậy x=1 hoặc x=1/5
b) 2(x+5)-x2-5x=0
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)\)=0
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
Vậy x=2 hoặc x=-5
c) x2-2x-3=0
\(\Leftrightarrow x^2-3x+x-3=0\)\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
vậy...
a;(x^2-5x)^2+10(x^2-5x)+24=0 b;(x^2+5x)-2(x^2+5x)=24
a) (x-3)3-3+x=0
b)5x(x-2)-(2+x)=0
c)5x(x-2000)-x+2000=0
d)x2-4x=0
giúp mình với mình cần gấp
a) (x-3)3-3+x=0
=> (x-3)3+(x-3)=0
=> (x-3)(x2-6x+10)
=> \(\left[{}\begin{matrix}x-3=0\\x^2-6x+10=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=1\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)