\(\left\{{}\begin{matrix}x^3+3xy^2=-49\\x^2-8xy+y^2=8y-17x\end{matrix}\right.\)
giải hệ pt
\(\left\{{}\begin{matrix}x^3+3xy^2=-49\\x^2-8xy+y^2=8y-17x\end{matrix}\right.\)
nhân pt (2) vs 3 sau đó cộng pt (1) vs (2) ta đc
\(\left\{{}\begin{matrix}x^3+3xy^2=-46\\x^3+3xy^2+3x^2-24xy+3y^2=24y-51x-46\end{matrix}\right.\)
bây h ta chú ý tới pt dưới
\(x^3+3xy^2+3x^2-24xy+3y^2-24y+51x+46=0\)
\(\left(x+1\right)\left(x^2+2x+3y^2-24y+49\right)=0\)
\(\left(x+1\right)\left[\left(x+1\right)^2+3\left(y-4\right)^2\right]=0\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\x^3+3xy^2=-49\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\)
vậy hệ có 2 nghiệm
Giải các hệ phương trình sau
\(1)\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{2}\left(8y^2+8y+1\right)\\4\left(x^3-8y^3\right)-6\left(x^2+4y^2\right)+3\left(x+2y\right)-1=0\end{matrix}\right.\)
\(2)\left\{{}\begin{matrix}3\sqrt{17x^2-y^2-6x+4}+x=6\sqrt{2x^2+x+y}-3y+2\\\sqrt{3x^2+xy+1}=\sqrt{x+1}\end{matrix}\right.\)
\(3)\left\{{}\begin{matrix}x^3+\left(2-y\right)x^2+\left(2-3y\right)x=5\left(x+1\right)\\3\sqrt{y+1}=3x^2-14x+14\end{matrix}\right.\)
\(4)\left\{{}\begin{matrix}4x^2=\left(\sqrt{x^2+1}+1\right)\left(x^2-y^3+3y-2\right)\\x^2+\left(y+1\right)^2=2\left(1+\dfrac{1-x^2}{y}\right)\end{matrix}\right.\)
\(5)\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x-1=0\\y^2+7y-17=9x+2\left(x+6\right)\sqrt{5-2y}\end{matrix}\right.\)
\(6)\left\{{}\begin{matrix}2x^2+3=4\left(x^2-2yx^2\right)\sqrt{3-2y}+\dfrac{4x^2+1}{x}\\\left(2x+1\right)\sqrt{2-\sqrt{3-2y}}=\sqrt[3]{2x^2+x^3}+x+2\end{matrix}\right.\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2+3xy^2=6xy-3x-49\\x^2-8xy+y^2=10y-25x-9\end{matrix}\right.\)
Giải hpt : a) \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2+6xy-\frac{1}{\left(x-y\right)^2}+\frac{9}{8}=0\\2y-\frac{1}{x-y}+\frac{5}{4}=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{x}{x^2-y}+\frac{5y}{x+y^2}=4\\5x+y+\frac{x^2-5y^2}{xy}=5\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}3xy+y+1=21x\\9x^2y^2+3xy+1=117x^2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=1\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
Giải hệ phương trình: \(\begin{cases}x^3+3xy^2=-49\\x^2-8xy+y^2=8y-17x\end{cases}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^3+3xy^2=-49\\x^2-8xy+y^2=8y-17x\end{cases}}\)
http://diendantoanhoc.net/topic/151610-leftbeginmatrix-x33xy2-49-x2-8xyy28y-17x2-endmatrixright/
<<<Click here>>>
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^3}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\)
Cần cù thì bù thông minh
Chỉ có lm thì ms có ăn
Ko lm mà mún đòi ăn
Thì có ăn ***** ăn đầu bird
Trích chú của mày
\(\left\{{}\begin{matrix}x+y+3xy=-3\\xy+1=0\end{matrix}\right.\)
___
\(\left\{{}\begin{matrix}x^2-y^2=16\\x+y=8\end{matrix}\right.\)
Câu 1:
Từ $xy+1=0\Leftrightarrow xy=-1$
Thay vào PT(1): $x+y=-3-3xy=-3-3(-1)=0$
$\Leftrightarrow x=-y$. Thay vào đk $xy=-1$ thì:
$(-y)y=-1$
$\Leftrightarrow y^2=1\Leftrightarrow y=\pm 1$
Với $y=1$ thì $x=-y=-1$
Với $y=-1$ thì $x=-y=1$
Vậy $(x,y)=(1,-1), (-1,1)$
Câu 2:
$x^2-y^2=16$
$\Leftrightarrow (x-y)(x+y)=16$
$\Leftrightarrow 8(x-y)=16$
$\Leftrightarrow x-y=2$
Kết hợp với $x+y=8$ thì:
$(x-y)+(x+y)=2+8$
$\Leftrightarrow 2x=10$
$\Leftrightarrow x=5$
$y=8-x=8-5=3$
Vậy.............