Tìm giá trị lớn nhất của biểu thức B=-x^2-y^2-xy+2x+3y
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Tìm giá trị lớn nhất của biểu thức
D=-x^2-y^2+xy+2x+2y
Tìm giá trị nhỏ nhất của các biểu thức:
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(B=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+200\)
\(C=x^2+xy+y^2-3x-3y\)
cho hai số thực x,y thỏa mãn 2x+3y\(\le7\). Giá trị lớn nhất của biểu thức P=x+y+xy là
Đề bài sai/thiếu, biểu thức này không thể tồn tại max nếu x; y chỉ là số thực (lấy ví dụ, \(x=y=-1000\), như vậy \(2x+3y< 0\le7\) phù hợp điều kiện, nhưng P lại ra 1 kết quả khổng lồ)
P chỉ tồn tại max khi x; y có thêm điều kiện (ví dụ x; y dương hoặc không âm)
Khi đó: \(2x+3y\le7\Rightarrow3y\le7-2x\Rightarrow y\le\dfrac{7}{3}-\dfrac{2}{3}x\)
Từ đó ta có:
\(P=x+y\left(x+1\right)\le x+\left(\dfrac{7}{3}-\dfrac{2}{3}x\right)\left(x+1\right)\)
\(\Rightarrow P\le-\dfrac{2}{3}x^2+\dfrac{8}{3}x+\dfrac{7}{3}=-\dfrac{2}{3}\left(x-2\right)^2+5\le5\)
\(P_{max}=5\) khi \(\left(x;y\right)=\left(2;1\right)\)
Tìm giá trị lớn nhất của biểu thức:
A= -2x2 + x : B = 120 - x2 - 2x - y2 + 3y
\(A=-2x^2+x=-2\left(x^2-\frac{1}{2}x\right)=-2\left(x^2-2.x.\frac{1}{4}+\frac{1}{4^2}\right)+\frac{1}{8}\)
\(=-2\left(x-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)
GTLN của A là \(\frac{1}{8}\) khi \(x-\frac{1}{4}=0\) hay \(x=\frac{1}{4}\)
\(B=120-x^2-2x-y^2+3y\)
\(=-\left(x^2+2x+1\right)-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)+120+1+\frac{9}{4}\)
\(=-\left(x+1\right)^2-\left(y-\frac{3}{2}\right)^2+123\frac{1}{4}\le123\frac{1}{4}\)
GTLN của B là \(123\frac{1}{4}\) khi \(x+1=0;y-\frac{3}{2}=0\) hay \(x=-1;y=\frac{3}{2}\)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Tim x : (x^4+2x^3+10x+25) : (x^2 + 5)=3
tìm giá trị nhỏ nhất của biểu thức P=x^2 + xy + y^2 - 3x -3y+16
a) tìm giá trị nhỏ nhất của biểu thức: A=\(x^2+xy+y^2-3x-3y+2004\)
b) TÌm giá trị nhỏ nhất của biểu thức: A=\(2x^2+9y^2-6xy-6x-12y+2006\)
c) Tìm min của y=\(\frac{x^4+x^2+5}{x^4+2x^2+1}\)