Những câu hỏi liên quan
H24
Xem chi tiết
NT
23 tháng 7 2023 lúc 13:46

AH=căn 12^2-9^2=3*căn 7(cm)

CH=AH^2/HB=9*7/9=7(cm)

BC=9+7=16cm

AC=căn CH*BC=4*căn 7(cm)

Bình luận (1)
AD
23 tháng 7 2023 lúc 13:53

Xét tam giác \(ABH\) vuông tại H có

\(AH^2+HB^2=AB^2\left(Pytago\right)\)

\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Xét tam giác ABC vuông tại A

\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)

Bình luận (0)
H9
23 tháng 7 2023 lúc 13:59

Ta có tam giác ABC vuông tại A và đường cao AH nên:

Áp dụng tính chất cạnh góc vuông và hình chiếu:

\(AB^2=BC\cdot HB\Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\)

Ta có tam giác HAB vuông tại H áp dụng tính định lý Py-ta-go:

\(AH=\sqrt{AB^2-HB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Mà: \(HB+HC=BC\Rightarrow HC=BC-HB=25-9=16\left(cm\right)\)

Lại áp dụng tính chất hình chiếu và cạnh góc vuông ta có:

\(AC=\sqrt{25\cdot16}=20\left(cm\right)\)

Bình luận (0)
VT
Xem chi tiết
HS
4 tháng 3 2021 lúc 10:25

Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)

=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)

=> \(DF=\sqrt{144}=12\left(cm\right)\)

Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh

Xét tam giác ABC và tam giác DEF ta có :

\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)

\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)

\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)

=> Tam giác ABC đồng dạng tam giác DEF

Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được

Bình luận (0)
 Khách vãng lai đã xóa
co
4 tháng 3 2021 lúc 10:25

ko b oi

Bình luận (0)
 Khách vãng lai đã xóa
MC
4 tháng 3 2021 lúc 15:22

hai tam giác ko thể đồng dạng bạn nhé

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
TG
18 tháng 3 2021 lúc 10:32

Tam giác ABC vuông tại A. Áp dụng Pitago

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow9^2+12^2=BC^2\)

\(\Rightarrow BC=15\)

Xét tam giác ABC và tam giác AHC ta có:

Góc C: chung

Góc BAC = Góc AHC (=900)

=> Tam giác ABC ~ Tam giác HAC (g - g)

\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\Rightarrow\dfrac{12}{HC}=\dfrac{15}{12}=\dfrac{5}{4}\)

\(\Rightarrow HC=12:\dfrac{5}{4}=12.\dfrac{4}{5}=9,6\left(cm\right)\)

Bình luận (0)
ST
Xem chi tiết
NL
22 tháng 12 2022 lúc 21:24

Áp dụng hệ thức lượng:

\(AK^2=BK.CK=9.4=36\)

\(\Rightarrow AK=6\left(cm\right)\)

Áp dụng định lý Pitago:

\(AB^2=AK^2+BK^2\Rightarrow AB=\sqrt{AK^2+BK^2}=3\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{AK^2+CK^2}=2\sqrt{13}\left(cm\right)\)

Bình luận (0)
NH
Xem chi tiết
GL
24 tháng 12 2016 lúc 10:58

ngu quá

Bình luận (0)
MT
Xem chi tiết
KK
Xem chi tiết
NT
22 tháng 9 2015 lúc 12:57

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

Bình luận (0)
LN
Xem chi tiết
NH
22 tháng 11 2016 lúc 16:40

cho tam giác abc, h là trực tâm, I là GĐ của các đường trung trực (tâm đường tròn ngoại tiếp). Gọi E là điểm đối xứng với A qua I.

CMR : BHCE là hình bình hành

Bình luận (0)
H24
24 tháng 11 2016 lúc 12:45

TU GIAI ĐÊ

Bình luận (0)
H24
Xem chi tiết
NM
16 tháng 9 2021 lúc 18:29

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=3,24\left(cm\right)\\HC=\dfrac{AC^2}{BC}=10,24\left(cm\right)\\AH=\sqrt{3,24\cdot10,24}=5,76\left(cm\right)\end{matrix}\right.\)

Bình luận (1)