Quy đồng 1/(x ^ 2 + 8x + 15) va 1/(x ^ 2 + 6x + 9)
Quy đồng mẫu thức của các phân thức
1. \(\dfrac{x-y}{2x^2-4xy+2y^2};\dfrac{x+y}{2x^2+4xy+2y^2};\dfrac{1}{y^2-x^2}\)
2. \(\dfrac{1}{x^2+8x+15};\dfrac{1}{x^2+6x+9}\)
3. \(\dfrac{1}{\left(a-b\right)\left(b-c\right)};\dfrac{1}{\left(c-b\right)\left(c-a\right)};\dfrac{1}{\left(b-a\right)\left(a-c\right)}\)
1: \(MTC=2\left(x-y\right)\left(x+y\right)\)
\(\dfrac{x-y}{2x^2-4xy+2y^2}=\dfrac{x-y}{2\left(x-y\right)^2}=\dfrac{1}{2\left(x-y\right)}=\dfrac{1\cdot\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{2\left(x-y\right)\left(x+y\right)}\)
\(\dfrac{x+y}{2x^2+4xy+2y^2}\)
\(=\dfrac{x+y}{2\left(x^2+2xy+y^2\right)}\)
\(=\dfrac{x+y}{2\left(x+y\right)^2}=\dfrac{1}{2\left(x+y\right)}=\dfrac{x-y}{2\left(x+y\right)\left(x-y\right)}\)
\(\dfrac{1}{x^2-y^2}=\dfrac{2}{2\left(x^2-y^2\right)}=\dfrac{2}{2\left(x-y\right)\left(x+y\right)}\)
2: \(\dfrac{1}{x^2+8x+15}=\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{x+3}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
\(\dfrac{1}{x^2+6x+9}=\dfrac{1}{\left(x+3\right)^2}=\dfrac{x+5}{\left(x+3\right)^2\cdot\left(x+5\right)}\)
3: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}=\dfrac{1\cdot\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(c-b\right)\left(c-a\right)}=\dfrac{1}{\left(b-c\right)\left(a-c\right)}=\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(\dfrac{1}{\left(b-a\right)\left(a-c\right)}=\dfrac{-1}{\left(a-b\right)\left(a-c\right)}=\dfrac{-\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
giúp mik kiểm tra 2 câu này vs
a) (x+1)(x+9)=(x+3)(x+5)
<=>x^2+10x+9=x^2+8x+15
<=>x^2+10x+9-x^2-8x-15=0
<=>9x-6=0
<=>9x=6
<=>x=6/9=2/3 => S= 2/3
d) (3x+5)(2x+1)=(6x-2)(x-3)
<=>6x^2+13x+5=6x^2-16x+6
<=>6x^2+13x+5-6x^2+16x-6=0
<=>29x-1=0
<=>29x=1
<=>x=1/29
a,
đoạn 9x-6-> 2x-6=0
=> x=3
b,6x^2+13x+5=6x^2-20x+6
33x=1
=>x=1/33
a) (x+1)(x+9)=(x+3)(x+5)
<=>x^2+10x+9=x^2+8x+15
<=>x^2+10x+9-x^2-8x-15=0
<=>9x-6=0 phải là 2x - 6
<=>9x=6
<=>x=6/9=2/3 => S= 2/3
d) (3x+5)(2x+1)=(6x-2)(x-3)
<=>6x^2+13x+5=6x^2-16x+6 phải là 6x^2 - 20x + 6
<=>6x^2+13x+5-6x^2+16x-6=0
<=>29x-1=0
<=>29x=1
<=>x=1/29
a) \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+10x+9=x^2+8x+15\)
\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)
Vây tập nghiệm của phương trình là \(S=\left\{3\right\}\)
d) \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow x=\frac{1}{33}\)
Vây tập nghiệm của phương trình là \(S=\left\{\frac{1}{33}\right\}\)
Quy đồng phân thức sau: a:11x-3/3x^2-15x-42,8/x^2-6x-7,13x/9x-63. b:2/x^2+2x,3x^2-6x/x^2-2x+4,10x^2+28-8/x^4+8x mình cần gấp ạ
Quy đồng phân thức sau: a:11x-3/3x^2-15x-42,8/x^2-6x-7,13x/9x-63. b:2/x^2+2x,3x^2-6x/x^2-2x+4,10x^2+28-8/x^4+8x mình cần gấp ạ
a) Tìm MTC:
\(\text{2x + 6 = 2(x + 3)}\)
\(\text{x2 – 9 = (x – 3)(x + 3)}\)
\(\text{MTC = 2(x – 3)(x + 3) = 2(x2 – 9)}\)
Nhân tử phụ:
\(\text{2(x – 3)(x + 3) : 2(x + 3) = x – 3}\)
\(\text{2(x – 3)(x + 3) : (x2 – 9) = 2}\)
Qui đồng:
b) Tìm MTC:
Tính tổng dãy phân số theo quy luật:
\( {1 \over x^2-5x+6x}\)+\( {2 \over x^2-8x +15}\)+\( {3 \over x^2-13x+40}\)
\(X^2-1\)
\(X^2+6X+9\)
\(4X^2-9\)
\(16X^2-8X+1\)
a) = (x -1). (x + 1)
b) \(=\left(x+3\right)^2\)
c) \(=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)
d) \(=\left(4x\right)^2-2.4x.1+1=\left(4x-1\right)^2\)
1) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2+9}+\dfrac{x}{x^2-9}\) 2) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\) 3) \(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\)
Quy đồng mẫu các phân thức sau:
a)\(\dfrac{7x-1}{2x^2+6x};\dfrac{5-3x}{x^2-9}\)
\(a,\dfrac{7x-1}{2x^2+6x}=\dfrac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}=\dfrac{7x^2-22x+3}{2x\left(x-3\right)\left(x+3\right)}\\ \dfrac{5-3x}{x^2-9}=\dfrac{2x\left(5-3x\right)}{2x\left(x-3\right)\left(x+3\right)}=\dfrac{10x-6x^2}{2x\left(x-3\right)\left(x+3\right)}\)
f)\(\dfrac{x^2-6x+9}{x^2-8x+15}=\)
l)\(\dfrac{5yx+5x+3+3y}{10xy-15x-9-6y}=\)
\(f,\dfrac{x^2-6x+9}{x^2-8x+15}\\ =\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x-5\right)}\\ =\dfrac{x-3}{x-5}\\ l,\dfrac{5xy+5x+3+3y}{10xy-15x-9+6y}\\ =\dfrac{5x\left(y+1\right)+3\left(y+1\right)}{5x\left(2y-3\right)+3\left(2y-3\right)}\\ =\dfrac{\left(y+1\right)\left(5x+3\right)}{\left(2y-3\right)\left(5y+3\right)}\\ =\dfrac{y+1}{2y-3}\)