Những câu hỏi liên quan
H24
Xem chi tiết
NL
5 tháng 5 2021 lúc 16:58

1.

a. \(\left|-x^2+x-4\right|>4\Leftrightarrow\left[{}\begin{matrix}-x^2+x-4>4\\-x^2+x-4< -4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+8< 0\left(vô-nghiệm\right)\\x^2-x>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

b. \(A=\dfrac{\left(cos^2x+sin^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin^4x-1}{\left(1-cos^2x\right)\left(1+cos^2x\right)-3sin^4x}\)

\(=\dfrac{3sin^4x-3sin^2x.cos^2x}{sin^2x\left(1+cos^2x\right)-3sin^4x}=\dfrac{3sin^2x\left(sin^2x-cos^2x\right)}{sin^2x\left(1+1-sin^2x-3sin^2x\right)}\)

\(=\dfrac{-3sin^2x.cos2x}{sin^2x\left(2-4sin^2x\right)}=\dfrac{-3cos2x}{2cos2x}=-\dfrac{3}{2}\)

 

Bình luận (0)
NL
5 tháng 5 2021 lúc 17:04

2.

a. \(\overrightarrow{AC}=\left(5;-3\right)\)

Đường cao BH vuông góc AC nên nhận (5;-3) là 1 vtpt

Phương trình BH:

\(5\left(x-1\right)-3\left(y+1\right)=0\Leftrightarrow5x-3y-8=0\)

b.

\(\overrightarrow{BC}=\left(1;3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)

Phương trình trung trực BC (qua M và vuông góc BC) có dạng:

\(1\left(x-\dfrac{3}{2}\right)+3\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow x+3y-3=0\)

Tâm I của đường tròn đồng thời nằm trên trung trực BC và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+11=0\\x+3y-3=0\end{matrix}\right.\) \(\Rightarrow I\left(-3;2\right)\)

\(\Rightarrow\overrightarrow{IB}=\left(4;3\right)\Rightarrow R^2=IB^2=25\)

Phương trình (C): \(\left(x+3\right)^2+\left(y-2\right)^2=25\)

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 4 2021 lúc 12:12

1.a

\(\left|-x^2+x-4\right|>4\Leftrightarrow\left[{}\begin{matrix}-x^2+x-4>4\\-x^2+x-4< -4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+8< 0\left(vô-nghiệm\right)\\x^2-x>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

b.

\(sin2A+sin2B+sin2C=2sin\left(A+B\right)cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left[cos\left(A-B\right)+cosC\right]=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=2sinC.\left(-2sinA.sin\left(-B\right)\right)=4sinA.sinB.sinC\)

Bình luận (0)
NL
28 tháng 4 2021 lúc 12:16

2.

\(\overrightarrow{AC}=\left(5;-3\right)\Rightarrow\) đường cao BH nhận (5;-3) là 1 vtpt

Phương trình BH:

\(5\left(x-1\right)-3\left(y+1\right)=0\Leftrightarrow5x-3y-8=0\)

b.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(0;2\right)\)

\(\overrightarrow{BC}=\left(1;3\right)\Rightarrow\) phương trình BC có dạng:

\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)

\(R=d\left(G;BC\right)=\dfrac{\left|3.0-1.2-4\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{6}{\sqrt{10}}\Rightarrow R^2=\dfrac{18}{5}\)

Phương trình: \(x^2+\left(y-2\right)^2=\dfrac{18}{5}\)

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 4 2021 lúc 11:32

1a.

\(\left|x^2-4x-1\right|\ge1\Leftrightarrow\left[{}\begin{matrix}x^2-4x-1\ge1\\x^2-4x-1\le-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-2\ge0\\x^2-4x\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2+\sqrt{6}\\x\le2-\sqrt{6}\\0\le x\le4\end{matrix}\right.\)

1b.

\(A=3\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)+4cos^6x-8sin^6x+6sin^4x\)

\(=3\left(sin^2x-cos^2x\right)\left(sin^4x+cos^4x\right)+4cos^6x-2sin^6x+6sin^4x\left(1-sin^2x\right)\)

\(=3sin^6x-3cos^6x+3sin^2x.cos^4x-3sin^4x.cos^2x+4cos^6x-2sin^6x+6sin^4x.cos^2x\)

\(=sin^6x+3sin^2x.cos^4x+3sin^4x.cos^2x+cos^6x\)

\(=\left(sin^2x+cos^2x\right)^3=1\)

Bình luận (0)
NL
28 tháng 4 2021 lúc 11:41

2.

a. \(\overrightarrow{CB}=\left(6;-2\right)=2\left(3;-1\right)\)

\(\overrightarrow{AB}=\left(9;-3\right)=3\left(3;-1\right)\)

\(\Rightarrow\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{AB}\Rightarrow\) ba điểm A;B;C thẳng hàng

\(\Rightarrow\) Đề bài sai, không có tam giác nào ở đây và do đó đương nhiên không thể dựng được đường cao của ABC

b. Gọi M là trung điểm AB \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)

Phương trình trung trực AB có dạng:

\(3\left(x-\dfrac{3}{2}\right)-1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x-y-4=0\)

Gọi I là tâm đường tròn \(\Rightarrow\) tọa độ I thỏa mãn:

\(3.6t-\left(1-2t\right)-4=0\Rightarrow t=\dfrac{1}{4}\Rightarrow I\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)

\(\Rightarrow\overrightarrow{IA}=\left(-\dfrac{9}{2};\dfrac{3}{2}\right)\Rightarrow R^2=IA^2=\dfrac{45}{2}\)

Phương trình: \(\left(x-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{45}{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 4 2021 lúc 11:25

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x< 6\\x^2-5x>-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x-6< 0\\x^2-5x+6>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 6\\\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1< x< 2\\3< x< 6\end{matrix}\right.\)

2.

\(A=-3\left(cos^4x+sin^4x+2sin^2x.cos^2x-2sin^2xcos^2x\right)+2\left(sin^2x+cos^2x\right)^3-6sin^2x.cos^2x.\left(sin^2x+cos^2x\right)\)

\(=-3\left(sin^2x+cos^2x\right)^2+6sin^2x.cos^2x+2-6sin^2x.cos^2x\)

\(=-3+2=-1\)

Bình luận (0)
H24
Xem chi tiết
NL
29 tháng 4 2021 lúc 0:47

2.

\(R=d\left(I;\Delta\right)=\dfrac{\left|3.2+4.\left(-1\right)-27\right|}{\sqrt{3^2+4^2}}=5\)

Phương trình: \(\left(x-2\right)^2+\left(y+1\right)^2=25\)

3.

- Với \(m=1\) pt trở thành: \(2=0\) (vô nghiệm) \(\Rightarrow\) thỏa mãn

- Với \(m\ne1\) pt đã cho vô nghiệm khi:

\(\Delta'=\left(m-1\right)^2-2m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-m-1\right)< 0\Rightarrow\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\)

Vậy pt vô nghiệm khi: \(\left[{}\begin{matrix}m< -1\\m\ge1\end{matrix}\right.\)

4. Đặt \(AB=x>0\)

\(tan35^0=\dfrac{BC}{BD}=\dfrac{BC}{x+10}\)

\(tan40^0=\dfrac{BC}{AB}=\dfrac{BC}{x}\)

\(\Rightarrow\dfrac{tan35^0}{tan40^0}=\dfrac{x}{x+10}\Leftrightarrow x.tan35^0+10tan35^0=x.tan40^0\)

\(\Rightarrow x=\dfrac{10.tan35^0}{tan40^0-tan35^0}\Rightarrow BC=x.tan40^0=\dfrac{10.tan35^0.tan40^0}{tan40^0-tan35^0}\approx42,3\left(m\right)\)

Bình luận (0)
H24
Xem chi tiết
NL
1 tháng 5 2021 lúc 22:41

1a.

\(\left|1-3x\right|< 5\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-3x>-5\\1-3x< 5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x>-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{4}{3}< x< 2\)

b.

\(A=2sin^2x-1-cosx\left(\sqrt{2}sinx-1\right)\)

\(=\left(\sqrt{2}sinx-1\right)\left(\sqrt{2}sinx+1\right)-cosx\left(\sqrt{2}sinx-1\right)\)

\(=\left(\sqrt{2}sinx-1\right)\left(\sqrt{2}sinx+1-cosx\right)\)

Bình luận (0)
NL
1 tháng 5 2021 lúc 22:46

2.

\(\overrightarrow{AB}=\left(3;2\right)\Rightarrow\) đường cao CH nhận (3;2) là 1 vtpt

Phương trình CH:

\(3\left(x-8\right)+2\left(y+11\right)=0\Leftrightarrow3x+2y-2=0\)

b. GỌi G là trọng tâm tam giác \(\Rightarrow G\left(1;-1\right)\)

Phương trình AB:

\(2\left(x+4\right)-3\left(y-3\right)=0\Leftrightarrow2x-3y+17=0\)

\(R=d\left(G;AB\right)=\dfrac{\left|2.1-3\left(-1\right)+17\right|}{\sqrt{2^2+\left(-3\right)^2}}=\dfrac{22}{\sqrt{13}}\)

Phương trình: \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{484}{13}\)

Bình luận (0)
MN
7 tháng 5 2021 lúc 18:30

undefined

Bình luận (0)
MN
7 tháng 5 2021 lúc 18:23

Bài 1 : 

\(n_{Mg}=a\left(mol\right),n_{Zn}=b\left(mol\right)\)

\(m_{hh}=24a+65b=31.5\left(g\right)\left(1\right)\)

\(n_{H_2}=\dfrac{17.92}{22.4}=0.8\left(mol\right)\)

\(Mg+H_2SO_4\rightarrow MgSO_4+H_2\)

\(Zn+H_2SO_4\rightarrow ZnSO_4+H_2\)

\(n_{H_2}=a+b=0.8\left(mol\right)\left(2\right)\)

\(\left(1\right),\left(2\right):a=0.5,b=0.3\)

\(m_{Mg}=0.5\cdot24=12\left(g\right)\)

\(m_{Zn}=0.3\cdot19.5\left(g\right)\)

\(n_{H_2SO_4}=n_{H_2}=0.8\left(mol\right)\)

\(C\%H_2SO_4=\dfrac{0.8\cdot98}{300}\cdot100\%=26.13\%\)

Bình luận (0)
H24
Xem chi tiết
NL
23 tháng 4 2021 lúc 11:30

1.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left(m-2\right)^2-m\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\-m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\le4\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\)

\(x_1+x_2+x_1x_2\ge2\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)}{m}+\dfrac{m-3}{m}-2\ge0\)

\(\Leftrightarrow\dfrac{m-7}{m}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge7\\m< 0\end{matrix}\right.\)

\(\Rightarrow m< 0\)

Bình luận (0)
NL
23 tháng 4 2021 lúc 11:33

2.

\(T=\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}+sinx.cosx\)

\(=1-sinx.cosx+sinx.cosx=1\)

3.

\(\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=3\Leftrightarrow\dfrac{sin^2x+cos^2x}{sinx.cosx}=3\)

\(\Leftrightarrow\dfrac{1}{sinx.cosx}=3\Leftrightarrow sinx.cosx=\dfrac{1}{3}\Leftrightarrow2sinx.cosx=\dfrac{2}{3}\)

\(\Leftrightarrow sin2x=\dfrac{2}{3}\)

\(0< x< \dfrac{\pi}{4}\Rightarrow0< 2x< \dfrac{\pi}{2}\Rightarrow cos2x>0\)

\(\Rightarrow cos2x=\sqrt{1-sin^22x}=\dfrac{\sqrt{5}}{3}\)

Bình luận (0)
H24
Xem chi tiết
NL
17 tháng 4 2021 lúc 7:18

3.

\(\pi< a< \dfrac{3\pi}{2}\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)

b. 

\(\dfrac{2+2cos2a-sin2a}{sin2a-sin^2a}=\dfrac{2+2\left(2cos^2a-1\right)-2sina.cosa}{2sina.cosa-sin^2a}\)

\(=\dfrac{4cos^2a-2sina.cosa}{sina\left(2cosa-sina\right)}=\dfrac{2cosa\left(2cosa-sina\right)}{sina\left(2cosa-sina\right)}=\dfrac{2cosa}{sina}=2cota\)

4.

\(\overrightarrow{BA}=\left(2;3\right)\Rightarrow\) đường thẳng d nhận (3;-2) là 1 vtpt

Phương trình d:

\(3\left(x-4\right)-2\left(y+1\right)=0\Leftrightarrow3x-2y-14=0\)

Bình luận (0)
NL
17 tháng 4 2021 lúc 7:25

5.

Đường thẳng BC vuông góc đường cao kẻ từ A nên nhận (1;-1) là 1 vtpt

Phương trình BC:

\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)

C là giao điểm BC và trung tuyến kẻ từ C nên là nghiệm:

\(\left\{{}\begin{matrix}x-y+3=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow C\left(2;5\right)\)

Do M là trung điểm BC

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_C=-4\\y_B=2y_M-y_C=-1\end{matrix}\right.\) \(\Rightarrow B\left(-4;-1\right)\)

Do A thuộc đường cao kẻ từ A nên tọa độ có dạng: \(A\left(a;4-a\right)\)

Gọi N là trung điểm AB \(\Rightarrow N\left(\dfrac{a-4}{2};\dfrac{3-a}{2}\right)\)

N thuộc trung tuyến kẻ từ C nên tọa độ thỏa mãn:

\(2\left(\dfrac{a-4}{2}\right)-\left(\dfrac{3-a}{2}\right)+1=0\Rightarrow a=3\) \(\Rightarrow A\left(3;1\right)\)

Bình luận (0)