Tìm các số nguyên x y thỏa mãn:
x3 + 2x2 + 3x + 2 = y3
Tìm tất cả các cặp số nguyên dương x,y thỏa mãn:
x3+y3-9xy=0
\(x^3+y^3-9xy=0\)
\(\Leftrightarrow\left(x+y\right)^3-3x^2y-3xy^2-9xy=0\)
\(\Leftrightarrow\left(x+y\right)^3+27-3xy\left(x+y+3\right)=27\)
\(\Leftrightarrow\left(x+y+3\right)\left[\left(x+y\right)^2-3\left(x+y\right)+9\right]-3xy\left(x+y+3\right)-27=0\)
\(\Leftrightarrow\left(x+y+3\right)\left(x^2+2xy+y^2-3x-3y+9-3xy\right)-27=0\)
\(\Leftrightarrow\left(x+y+3\right)\left(x^2-xy+y^2-3x-3y+9\right)-27=0\)
\(\Leftrightarrow\left(x+y+3\right)\left(2x^2-2xy+2y^2-6x-6y+18\right)-54=0\)
\(\Leftrightarrow\left(x+y+3\right)\left[\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2\right]=54\)
Do x, y > 0 => x + y + 3 > 3
Mà x, y nguyên dương => \(\left\{{}\begin{matrix}x+y+3\in Z^+\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2\in Z^+\end{matrix}\right.\)
Và \(\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2⋮2\)
TH1: \(\left\{{}\begin{matrix}x+y+3=9\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-xy+y^2-3x-3y=-6\end{matrix}\right.\)
\(\Leftrightarrow x^2-x\left(6-x\right)+\left(6-x\right)^2-3x-3\left(6-x\right)=-6\)
\(\Leftrightarrow x^2-6x+8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\Leftrightarrow y=2\left(tm\right)\\x=2\left(tm\right)\Leftrightarrow y=4\left(tm\right)\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y+3=27\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=24\\x^2-xy+y^2-3x-3y=-8\end{matrix}\right.\)
\(\Leftrightarrow x^2-x\left(24-x\right)+\left(24-x\right)^2-3x-3\left(24-x\right)=-8\)
\(\Leftrightarrow3x^2-72x+512=0\) (vô nghiệm)
KL: Vậy phương trình có tập nghiệm (x;y) = [(2;4);(4;2)]
Tìm các cặp số nguyên x,y thỏa mãn:
a) x(2x2+x+2)=5y(5y+2)
b) 3x(3x-2)=y3
Tìm tất cả cặp số dương x,y thỏa mãn:
x3+y3+3(x2+y2)+9(x+y)=18xy
1. Tìm các số nguyên x, y thỏa mãn: $x^3+2x^2+3x+2=y^3$x3+2x2+3x+2=y3
x3+2x2+3x+2=y3
Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
Tìm các cặp số nguyên x,y thỏa mãn:
a)4x2+4x=y3+y2+y
b)x4+2x2=y3
Tìm tất cả các nghiệm nguyên x, y của phương trình x3 + 2x2 + 3x + 2 = y3.
+, Nếu x = 0 => ko tồn tại y thuộc Z
+, Nếu x khác 0 => x^2 >= 1 => x^2-1 >= 0
Có : y^3 = x^3+2x^2+3x+2 > x^3 ( vì 2x^2+3x+2 > 0 )
Lại có : y^3 = (x^3+3x^3+3x+1)-(x^2-1) = (x+1)^3 - (x^2-1) < = (x+1)^3
=> x^3 < y^3 < = (x+1)^3
=> y^3 = (x+1)^3
=> x^2-1 = 0
=> x=-1 hoặc x=1
+, Với x=-1 thì y = 0
+, Với x=1 thì y = 2
Vậy .............
Tk mk nha
Ta có: \(x^3+2x^2+3x+2=y^3\) (1)
Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{2}x\right)+2=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+2-2.\frac{9}{16}\)
\(=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\) Vì \(\left(x+\frac{3}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)
\(\Rightarrow y^3>x^3\Rightarrow y^3\ge\left(x+1\right)^3\)
\(\Rightarrow x^3+2x^2+3x+2\ge\left(x+1\right)^3\) \(\Rightarrow x^3+2x^2+3x+2\ge x^3+3x^2+3x+1\)
\(\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-3x-2\le0\)
\(\Rightarrow x^2-1\le0\Rightarrow x^2\le1\) Vì \(x\in Z\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)
+ TH1: x2 = 0 => x =0 Thay vào pt (1) ta được y3 = 2 (loại) vì y nguyên
+ TH2 : x2 = 1 => \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Thay x=1 vào pt (1) ta đc: 1+2+3+2 = 8 = y3 => y = 2
Thay x= -1 vào pt (1) ta đc: -1 + 2 -3 +2 = 0 =y3 => y = 0
Vậy cặp (x;y) là (1;2) ; (-1;0).
\(Xét \(2x^2+3x+2=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0\forall x\in R\) => \(x^3< y^3\left(1\right)\) (1) Giả sử : \(y^3< \left(x+2\right)^3\) \(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\) \(\Leftrightarrow-4x^2-9x-6< 0\) \(\Leftrightarrow4x^2+9x+6>0\) \(\Leftrightarrow4\left(x+\dfrac{9}{8}\right)^2+\dfrac{15}{64}>0\) => Giả sử đúng . => \(y^3< \left(x+2\right)^3\left(2\right)\) Từ (1)(2) => \(y^3=\left(x+1\right)^3\) \(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^2+3x+1\) \(\Leftrightarrow x^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) .) Khi \(x=1\Rightarrow y=2\). .) Khi \(x=-1\Rightarrow y=0\) Vậy nghiệm của pt ( x;y ) = {( 1;2 ) ; ( -1;0 )}\)
Tìm x, y thuộc Z thỏa mãn : x3+2x2+3x+2=y3.
Tìm x, y thuộc Z thỏa mãn : x3+2x2+3x+2=y3.
Câu 18: (1 điểm)
a,Cho B = 3 + 32 + 33 + …… + 360. Hãy cho biết B có là hợp số không? Vì sao
b, Tìm các cặp số nguyên dương (x, y) thỏa mãn:x3 +5y =133
a: \(B=3+3^2+3^3+...+3^{60}\)
\(=3\left(1+3+3^2+...+3^{59}\right)⋮3\)
=>B là hợp số
b: \(x^3+5^y=133\)
=>\(\left\{{}\begin{matrix}x^3< 133\\5^y< 133\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \sqrt[3]{133}\simeq5,1\\y< log_5133\simeq3,03\end{matrix}\right.\)
mà x,y là các số nguyên dương
nên \(\left\{{}\begin{matrix}x\in\left\{1;2;3;4;5\right\}\\y\in\left\{1;2;3\right\}\end{matrix}\right.\)
mà \(x^3+5^y=133\)
nên x=2 và y=3
Cho hai số dương x,y thỏa mãn: 2x3-2x2+x2y+2xy2+y3-2y2=0
Tìm giá trị nhỏ nhất của biểu thức Q=\(\dfrac{3}{9x^2+6xy+y^2}=\dfrac{3}{3x^2+6xy+2y^2}\)
Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)
Từ giả thiết ta có:
\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x+y=2\)
Do đó:
\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)
\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)
\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)