TÍNH GIÁ TRỊ BIỂU THỨC
m+ n +p biết m x 3+ n x 3+ p x 3= 2016
Tính giá trị biểu thức
M=(x+3)(x2-3x+9)-(3-2x)(4x2+6x+9) tại x = 20
N=(x-2y)(x2+2xy+4y2)+16y3 biết x+2y=0
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(3-2x\right)\left(4x^2+6x+9\right)\)
\(M=\left(x^3+3^3\right)-\left[3^3-\left(2x\right)^3\right]\)
\(M=x^3+27-27+8x^3\)
\(M=9x^3\)
Thay x=20 vào M ta có:
\(M=9\cdot20^3=72000\)
Vậy: ...
\(N=\left(x-2y\right)\left(x^2+2xy+4y^2\right)+16y^3\)
\(N=x^3-\left(2y\right)^3+16y^3\)
\(N=x^3-8y^3+16y^3\)
\(N=x^3+8y^3\)
\(N=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Thay \(x+2y=0\) vào N ta có:
\(N=0\cdot\left(x^2-2xy+4y^2\right)=0\)
Vậy: ...
cho biểu thức
M = 2 √ x /√ x − 3 − x + 9 √ x/ x − 9 = 2 𝑥/ 𝑥 − 3 − 𝑥 + 9 𝑥 /𝑥 − 9 và N = x + 5 √ x/ x − 25 𝐵 = 𝑥 + 5 𝑥 𝑥 − 25 với x ≥ 0 , x ≠ 9 , x ≠ 25 𝑥 ≥ 0 , 𝑥 ≠ 9 , 𝑥 ≠ 25
1, rút gọn M
2 Tìm các giá trị của x thỏa mãn M/N.(căn x + 3)=3x-5
1) Rút gọn biểu thức M: M = (2√x)/(√x - 3) - (x + 9√x)/(x - 9) = (2√x(x - 9) - (x + 9√x)(√x - 3))/(√x - 3)(x - 9) = (2x√x - 18√x - x√x + 9x + 9x - 27√x - 9√x + 27 )/(√x - 3)(x - 9) = (2x√x - 36√x + 27x)/(√x - 3)(x - 9) = (x(2√x - 36) + 27x) /(√x - 3)(x - 9) = (x(2√x - 36 + 27))/(√x - 3)(x - 9) = (x(2√x - 9))/( √x - 3)(x - 9) Do đó biểu thức M Rút gọn là: M = (x(2√x - 9))/(√x - 3)(x - 9) 2) Tìm các giá trị của x ă mãn M/N.(căn x + 3) = 3x - 5: Ta có phương trình: M/N.(căn x + 3) = 3x - 5 Đặt căn x + 3 = t, t >= 0, ta có x = t^2 - 3 Thay x = t^2 - 3 vào biểu thức M/N, ta có: M/N = [(t^2 - 3)(2√(t^2 - 3) - 9)]/[(t^2 - 3 + 5)t] = [(2(t^2 - 3) √(t^2 - 3) - 9(t^2 - 3))]/(t^3 + 2t - 3t - 6) = [2(t^2 - 3)√(t^2 - 3) - 9(t^2 - 3)]/(t(t - 1)(t + 2)) Đặt u = t^2 - 3, ta có: M/N = [2u√u - 9u]/((u + 3)(u + 2)) = [u(2√u - 9)]/((u + 3)(u + 2)) Đặt v = √u, ta có: M/N = [(v^ 2 + 3)(2v - 9)]/[((v^2 + 3)^2 - 3)(v^2 + 2)] = [(2v^3 - 18v + 6v - 54)]/[ ( (v^4 + 6v^2 + 9) - 3)(v^2 + 2)] = (2v^3 - 12v - 54)/(v^4 + 6v^2 + 6v^2 - 9v^2 + 18) = (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) Ta cần tìm các giá trị của v đối xứng phương trình M/N = 3x - 5: (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3(t^2 - 3) - 5 (2v ^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3t^ 2 - 14 (2v^3 - 12v - 54) = (v^4 + 12v^2 + 18)(3t^2 - 14) Tuy nhiên, từ t = √(t^2 - 3), ta có v = √u = √(t^2 - 3) => (2(v^2)^3 - 12(v^2) - 54) = ((v^2)^4 + 12(v^2)^2 + 18) (3(v^2 - 3) - 14) => 2v^
Cho biểu thức
M=\(\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right).\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)với x\(\ge\)0;x\(\ne\)4;x\(\ne\)49
a.Rút gọn M
b.Tính giá trị biểu thức của M tại x thỏa mãn \(^{x^2}\)-4x=0
c.Tìm x biết M=\(-\dfrac{\sqrt{x}}{4}\)
d.Tìm x biết M<-1
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức \(M=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\), ta được:
\(M=\dfrac{-\sqrt{0}}{\sqrt{0}-2}=-\dfrac{0}{-2}=0\)
Vậy: Khi \(x^2-4x=0\) thì M=0
Tính giá trị biểu thức m + n + p biết m * 3 + n * 3 + p * 3 = 2016
3m + 3n + 3p = 2016
3.(m + n + p) = 2016
m + n + p = 2016 : 3
m + n + p = 672
Cho biểu thức P = ( a + 1 ) x 2 + ( b + 1 ) x 3
a. Tính giá trị biểu thức P với a = 9, b = 15
b. So sánh giá trị của biểu thức P vừa tìm được với biểu thức
m = 2 x a + 3 x b + 5 với a = 9 và b = 15
a: Thay a=9 và b=15 vào P, ta được:
\(P=\left(9+1\right)\cdot2+\left(15+1\right)\cdot3\)
\(=10\cdot2+16\cdot3=20+48=68\)
b: \(m=2\cdot a+3\cdot b+5=2\cdot9+3\cdot15+5=68\)
mà P=68
nên P=m
Cho đa thức
M(x)=2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1
a,Thu gọn M(x)
b,Tính giá trị của M(x) tại x=0; x= -1,x=1/3
c,Tìm x để P(x)=0 ;P(x)=1
`a, M(x) = 2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1`
`M(x)= (2x^3 - 2x^3)+(x^2+3x^2)-3x+(5+1) `
`M(x)= 4x^2-3x+6`
`b,` giá trị của `M(x)` tại `x=0`
`-> M(0)=2*0^3 + 0^2 + 5 - 3*0 +3*0^2 - 2*0^3 - 4*0^2 +1`
`M(0)= 0+0+5-0+0+0-0-0+1 = 5+1=6`
Giá trị của `M(x)` tại `x=1`
`-> M(1)=2*1^3 + 1^2 + 5 - 3*1 +3*1^2 - 2*1^3 - 4*1^2 +1`
`M(1)=2+1+5-3+3-2-4+1 = (2-2)+(1+1)+5-(3-3)-4=2+5-4=7-4=3`
`c,` Giá trị của `P(x)` là cái gì bạn nhỉ?
Bài 1:
a. Tìm x biết : \(\frac{1}{2016}:2015x=\frac{-1}{2015}\)
b. Tìm các giá trị nguyên của n để phân số \(M=\frac{3n-1}{n-1}\)có giá trị là số nguyên.
c. Tính giá trị của biểu thức :\(N=xy^2z^3+x^2y^3z^4+x^3y^4z^5+...+x^{2014}y^{2015}z^{2016}\)tại \(x=-1;y=-1;z=-1\)
\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)
a, 2015x=1/2016:(-1.2015)
2015x= -2015/2016
x= -2015/2016 :2015
x= -1/2016
b, M=3n-1/n-1=3(n-1)+2/n-1=3+ 2/n-1
để M thuộc Z thì 2/n-1 thuộc z (vì 3 thuộc Z)
<=>n-1 thuộc Ư(2)
<=>n-1 thuộc (1,-1,2,-2)
<=>n thuộc (2,0,3,-1)
vậy....
Biết m + n bằng 100 tính giá trị biểu thức 5 x 3 x m + n x 8 + 5600 giải giúp mình nhé
Tính giá trị biểu thức : 35 x m + 35 x p + 35 x n
với m = 3 ; n = 2 ; p = 5
Trả lời: Giá trị của biểu thức: 35 x m + 35 x p + 35 x n là ...
\(35\times m+35\times n+35\times p\)
\(=35\times\left(m+n+p\right)\)
Thay \(m=3;n=2;p=5\) vào biểu thức trên ta có:
\(35\times\left(3+2+5\right)=35\times10=350\)
35 x m + 35 x p + 35 x n
Thay số: ⇒ 35 x 3 + 35 x 5 + 35 x 2
= 35 x (3 + 5 + 2)
= 35 x 10
= 350