Những câu hỏi liên quan
VK
Xem chi tiết
DK
22 tháng 6 2016 lúc 15:21

a+b+c+d=0 
=> a + b = -(c+d) 
=> (a+b)^3 = -(c+d)^3 
=> a^3 + b^3 + 3ab (a+b) = -c^3- d^3 - 3cd (c+d) 
=> a^3+b^3+c^3+d^3 = -3ab (a+b) - 3cd (c+d) 
=> a^3 + b^3 + c^3 + d^3 = 3ab (c+d)- 3cd (c+d) [vì a+b = - (c+d)] 
==> a^3 + b^^3 + c^3 + d^3 =3 (c+d) (ab-cd) (đpcm)

Bình luận (0)
SV
Xem chi tiết
SV
1 tháng 11 2016 lúc 20:44

ta có a+b+c+d = 0=> b+c= -( a+d) => (b+c)^3 = - (a+d)^3

=> b^3+ c^3 + 3bc( b+c) = -( a^3 +d^3 + 3ad(a+d))

=> a^3+b^3+c^3+d^3 = - 3ad( a+d) - 3bc(b+c) = 3ad(b+c) - 3bc(b+c) 

= 3(b+c)(ad-bc)

Bình luận (0)
TL
10 tháng 4 2017 lúc 12:18

sao cậu tự đặt câu hỏi rồi lại tự trả lời luôn         

       thế là sao??????????

Bình luận (0)
VD
19 tháng 9 2019 lúc 22:15

minh thich la minh lam thoi

Bình luận (0)
TB
Xem chi tiết
NT
19 tháng 8 2023 lúc 8:02

a+b+c+d=0

=>a+d=-(b+c)

=>(a+d)^3=-(b+c)^3

=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3+3bc\left(a+d\right)\)

=>\(a^3+d^3+b^3+c^3=3bc\left(a+d\right)-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(a+d\right)\left(bc-ad\right)\)

=>\(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)

Bình luận (0)
DD
Xem chi tiết
DD
Xem chi tiết
NT
26 tháng 9 2020 lúc 22:01

Ta có: a+b+c+d=0

\(\Leftrightarrow b+c=-\left(a+d\right)\)

\(\Leftrightarrow\left(b+c\right)^3=-\left(a+d\right)^3\)

\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-\left[a^3+d^3+3ad\left(a+d\right)\right]\)

\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-a^3-d^3-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\cdot\left[-\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)+3ad\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
TM
Xem chi tiết
QA
Xem chi tiết
NT
24 tháng 3 2020 lúc 16:12

Ta có: a+b+c+d=0

\(a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
NA
27 tháng 6 2016 lúc 14:35

ta có : a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)3=-(c+d)3 
=> a3+b3+3ab(a+b)=-c3-d3-3cd(c+d) 
=> a3+b3+c3+d3=-3ab(a+b)-3cd(c+d) 
=> a3+b3+c3+d3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
=> a3 +b3+c3+d3==3(c+d)(ab-cd)

(dpcm)

Bình luận (0)