Violympic toán 8

QA

Cho a + b + c + d = 0. Chứng minh rằng: \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)

NT
24 tháng 3 2020 lúc 16:12

Ta có: a+b+c+d=0

\(a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DA
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
SD
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết